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ABSTRACT
As data becomes dynamic, large, and distributed, there is in-
creasing demand for what have become known as distributed
stream algorithms. Since continuously collecting the data to
a central server and processing it there incurs very high com-
munication and computation complexities, it is advantageous
to define local conditions at the nodes, such that – as long as
they are maintained – some desirable global condition holds.

A generic algorithm which proved very useful for reducing
communication in distributed streaming environments is
geometric monitoring (GM). Alas, applying GM to many
important tasks is computationally very demanding, as it
requires solving a notoriously difficult problem – computing
the distance between a point and a surface, which is often
very time-consuming even in low dimensions. Thus, while
useful for reducing communication, GM often suffers from
exceedingly heavy computational burden at the nodes, which
renders it very problematic to apply, especially for “thin”,
battery-operated sensors, which are prevalent in numerous
applications, including the “Internet of Things” paradigm.

Here we propose a very different approach, designated
CB (for Convex/Concave Bounds). CB is based on directly
bounding the monitored function by suitably chosen convex
and concave functions, that naturally enable monitoring dis-
tributed streams. These functions can be checked on the fly,
yielding far simpler local conditions than those applied by
GM. CB’s superiority over GM is demonstrated in reducing
computational complexity, by several orders of magnitude in
some cases. As an added bonus, CB also reduced communi-
cation overhead in all application scenarios we tested.
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ited Devices

1. INTRODUCTION
The following is a canonical problem in distributed sys-

tems and databases: given are distributed nodes, and a
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function which depends on the data at all of them. How
can its value be computed, or approximated, with minimal
communication? Typically, the trivial solution (collecting all
data to a central node and computing the function there) is
impractical.

With the advent of data stream systems and their increasing
importance in quickly evolving fields such as social networks,
a more difficult variant of this problem began attracting con-
siderable interest: assume that the data at the nodes is also
dynamic. Continuously and exactly computing the function’s
value is typically infeasible, as real-world data consists of
many nodes, each holding a large, rapidly changing data
stream. This led to the introduction of the distributed moni-
toring problem (also referred to as the functional monitoring
problem, [29, 7, 34]; see also the survey in [9]), which can be
broadly defined as follows:

Definition 1. Given is a distributed system, with nodes
N1...Nk, with Ni holding a dynamic data vector vi(t) (t will
be suppressed hereafter to reduce equation clutter). Also given
is a function f , which depends on all the vi’s, and a threshold
T . The goal is to define local conditions at the nodes, such
that:

• Correctness: As long as all local conditions hold, the
global condition f(v1...vk) ≤ T is also guaranteed to
hold.

• Communication efficiency: The local conditions are
“lenient”, i.e. the number of times in which they are
violated is minimal.

• Computational efficiency: The complexity of checking
the local conditions is minimal.

Case study. As a motivating real-life example [26],
which applies the Pearson Correlation Coefficient function
(treated in this paper), consider a distributed sensor network
used to monitor air quality. Often, not only the information
on the individual pollutants is important, but the correlations
between them as well. For example, if an event i is defined
as pollutant i crossing a certain threshold, one may wish to
know whether there exists a correlation between events i, j
for two different pollutants. A commonly used such measure,
the Pearson Correlation Coefficient (PCC), quantifies such a
correlation by the value z−xy√

x−x2
√
y−y2

, where x, y, z are resp.

the probabilities of event i, event j, and both events simulta-
neously. For a distributed system, the global probabilities
are averaged over the nodes. It is easy, however, to see that
the PCC value of the global probabilities can be above a



given threshold T , while the local value at some of the nodes
is below T , and vice-versa (for example, in a system with
two nodes and local values x1 = 0.8, y1 = 0.2, z1 = 0.17 and
x1 = 0.2, y1 = 0.7, z1 = 0.15, the local PCC values are 0.062
and 0.054, and the global value is −0.26). This is because, for
arbitrary functions, there is generally no correlation between
the average of the values and the value at the average.

For general functions, defined over a distributed system,
it is typically impossible to determine the position of their
global values vis-a-vis T , when given just the local values.
The distributed monitoring problem is to impose local con-
ditions which will guarantee that the global value did not
cross T .

This problem is known to be rather difficult (NP-complete
even in very simple scenarios; see [21]). Nonetheless, consid-
erable progress has been made for real-life problems (Section
2).

Geometric monitoring (GM), introduced in [32], deals with
the case in which the monitored function can be expressed
as the application of an arbitrary function to the aggregated
vector v1+..+vk

k
, i.e. f = f( v1+..+vk

k
). This model turns out

to be rich enough to be applicable to a wide range of problems
(see Section 2.1). To the best of our knowledge, GM is the
only completely generic method for monitoring arbitrary
functions over the aggregated data; in this paper, the most
recent version of GM [22] is the baseline for comparison.

While a more complete description of GM is deferred to
Section 2.1, we note that in order to apply it, the following
problem should be repeatedly solved: let S be the hyper-
surface (or threshold surface) defined by
S = {u|f(u) = T}. Then, it is required that each node,
at every time-step, calculate the distance of a certain point
(unique to that node) from S. This problem can be exceed-
ingly difficult even for surfaces in low-dimensional Euclidean
space, and it can render GM unsuitable for monitoring even
relatively simple functions, such as the cosine similarity be-
tween two vectors (more on this in Section 2.2).

1.1 The convex bound (CB) method
We propose here a very different, simpler, and more direct

method to solve the distributed monitoring problem. It relies
on the simple observation that, if f is a convex function,
then, if f(vi) ≤ T holds at every node, it also holds that
f( v1+..+vk

k
) ≤ T . Thus, monitoring the value of a convex

function (from above) is trivial – just monitor its value at
every node.

To handle a general f , we propose to search for a convex
function c such that c(u) ≥ f(u) for all vectors u, and monitor
the condition c ≤ T . This yields a far simpler monitoring
condition, whose correctness implies the correctness of the
desired condition f ≤ T . Naturally, the following conditions
should hold:

• c should be easy to derive and calculate.

• In order to avoid a high ratio of “false alarms”, c should
tightly bound f .

We refer to the proposed method as convex bound (CB).
Clearly, monitoring f ≥ T can be similarly achieved by
finding a concave lower bound.

1.2 Contributions
We offer the following contributions:

• Introducing the CB method and applying it to monitor
four popular functions: the Pearson correlation coeffi-
cient (PCC hereafter), inner product, cosine similarity,
and PCA-Score. These functions were chosen both
for their great practical importance and since they do
not fall into any category for which there exist simple,
efficient solutions (they are not linear, convex, concave,
or monotonic).

• Experimentally validating against state-of-the-art meth-
ods. CB proved to be far less demanding in terms of
local computation at the nodes. Local computation
was reduced by one to six orders of magnitude. As an
added bonus CB reduced communication overheads for
all datasets, functions, and thresholds we tested.

• Proving that every solution GM arrives at can also be
obtained with CB.

• Providing a general approach for calculating the convex
bound function and proving that it is optimal up to
second order Taylor expansion.

2. PREVIOUS WORK
Much of the early work on monitoring distributed streams

dealt with the simpler cases of linear functions [20, 19]. Dis-
tributed sensor networks were studied in [28, 27]. Other work
included top-k monitoring [4]; distributed monitoring of the
value of a single-variable polynomial [30], and perturbative
analysis of eigenvalues, which was applied to determine local
conditions on traffic volume data at the nodes of a distributed
system, in order to monitor system health [17]. In [33], the
monitoring problem is studied in a probabilistic setting, and
in addition to the function’s score, a probability threshold
is applied; see also [25]. Monitoring entropy was studied in
[3]. Ratio queries are handled in [15]. In [35] the norm of
the average vector is monitored.

While some problems in monitoring over distributed sys-
tems were treated in the past, we are not aware of any
general method (capable of handling arbitrary non-linear,
non-monotonic, non-convex functions) except for GM and
its derivatives, which are surveyed next.

2.1 Previous work on geometric monitoring
In [31, 32] a general approach, geometric monitoring (GM),

was proposed for tracking the value of a general function over
distributed streams. GM rests on a geometric result, the
so-called bounding lemma (details follow in this subsection),
which makes it possible to “break up” a global threshold
query into conditions that can be checked locally at each site.
Followup work [22, 13] proposed various extensions to the
basic method. Recent work on GM includes efficient outlier
detection in sensor networks [8] and sketch-based monitoring
of norm, range-aggregate, and join-aggregate queries over
distributed streams [12].

While GM achieved state-of-the-art results in reducing
communication overhead for a nice range of central problems,
its application is typically hampered by high computational
overhead at the nodes. It is this problem which the proposed
CB approach aims to alleviate.



Since GM is our baseline for comparison, and it also shares
some basic terminology with CB, we next briefly describe it.
Proofs and further details can be found in [22] (which is the
version that was implemented).

A brief view of GM. Recall that the distributed mon-
itoring problem considers whether f( v1+..+vk

k
) ≤ T , where

{vi} denote the local dynamic data vectors at the nodes.
GM rests on the following geometric interpretation of this
question: define the admissible region, A, by
A , {u|f(u) ≤ T}. Then, the question is whether the con-
dition v1+..+vk

k
∈ A holds. The first step in answering this

question is the following:

Lemma 1. [32] Let vi(0) denote the initial value of the
data vector at the i-th node, and let the so-called reference
point, p0, be equal to the average of these initial values:

p0 = v1(0)+..+vk(0)
k

. We assume that, during the initial syn-
chronization, a coordinator node broadcasts p0 to all nodes.
Denote the change in the data vector at the i-th node, i.e.
vi−vi(0), by di (it will be referred to as the i-th drift vector).
Then, the following holds:

v =
v1 + ..+ vk

k
=

(p0 + d1) + ..+ (p0 + dk)

k
�

Now, the i-th node can independently compute p0 + di; and
since the global vector v is equal to the average of p0 + di,
i = 1..k, it obviously lies in their convex hull. This can
be used to impose local conditions on p0 + di, which will
guarantee that v ∈ A. This is achieved by the bounding
lemma:

Theorem 1. [32] Let Bi denote the (solid) sphere with

center p0 + di/2 and radius ||di||/2. Then the union

k⋃
i=1

Bi

contains the convex hull of the vectors p0, p0 + d1...p0 + dk;
hence it contains v.

As a result of the bounding lemma, the local condition used
in GM is the following: node i remains silent as long as its
sphere Bi is contained in A (Fig. 1). If this condition is
violated, the system enters a violation recovery phase [32,
12].

Figure 1: Applying local conditions in GM. The drift
vector di causes a violation, since the sphere it de-
fines with p0 intersects the inadmissible region Ā;
however, dj does not cause a violation.

2.2 Computational complexity of GM
To apply GM, it must be repeatedly checked whether

a certain sphere intersects with Ā – that is, whether its
radius is smaller than the distance from its center to A’s
boundary, which is defined by the threshold surface {u|f(u) =

T}. Computing the distance from a point to the threshold
surface of a general function is a notoriously difficult problem,
and a closed-form solution very rarely exists. Worse, there
exist no algorithms which guarantee that the distance will
be recovered. Even for the case of a polynomial f , the
solution may require an inordinate amount of time; closed-
form solutions are often impossible to derive, and iterative
schemes are slow and not guaranteed to converge. Known
upper bounds on the complexity are extremely high (doubly
exponential in the number of variables [2]).

In [24], GM was extended by the convex decomposition
(CD) approach, which works by decomposing Ā into convex
subsets. However, the resulting algorithm has to be specifi-
cally tailored to each monitored function, and it suffers from
the need to solve the same type of problem as GM (finding
the closest point on a surface). For the inner product func-
tion, the solution was quite complicated, and we could not
apply CD to the PCC or to cosine similarity, which are easily
treated by CB.

Clearly, run-times as those often incurred by GM and its
derivatives are unacceptable for many distributed stream-
ing systems. We now introduce CB, and demonstrate its
advantage for monitoring four popular functions.

3. THE CB METHOD
As noted in the Introduction, it is easy to define local

conditions for the monitoring problem (Def. 1) when f is
convex: every node i must only check the condition f(p0 +
di) ≤ T (correctness follows immediately from Lemma 1).
We propose to extend this simple observation to monitor
arbitrary functions, using an approach which works directly
in the realm of functions, as opposed to seeking a geometric
solution. The proposed solution works by “relaxing” f to a
convex function c that bounds f from above, and monitoring
the condition c ≤ T . This condition both implies f ≤ T , and
is also easy to monitor. We shall refer to c as a convex bound
for f . Fig. 2 schematically demonstrates the idea behind
CB.

Figure 2: x2 + 10 (blue curve) is a convex bound for
x2 + 10 sin(x) (dark curve).

The next theorem states that every solution which GM
provides is also realizable as a solution provided by CB. The
proof is omitted due to lack of space.

Theorem 2. For every monitoring problem, there is a
solution obtained with CB which is exactly identical to the
solution obtained with GM – that is, it imposes exactly the
same local conditions.

3.1 Choosing convex bounds
There are, of course, an infinite number of convex bounds



for f , and the question is which of them to choose. To this
end, we first propose the following definition.

Definition 2. Let f be the monitored function. A tight
family of convex bounds for f , denoted CB(f), is a set of
convex functions satisfying the following requirements:

• g ∈ CB(f) implies that g is convex and, for every u,
g(u) ≥ f(u) (the last condition will be denoted g � f).

• Let c be any convex function such that c � f . Then
there exists g ∈ CB(f) such that c � g.

• If g1, g2 ∈ CB, then neither g1 � g2 nor g2 � g1.

Clearly, if g1, g2 are both convex bounds for f , and g1 � g2,
it is better to use g2 when monitoring f (since the condition
g2(v) ≤ T is weaker than g1(v) ≤ T ). Therefore we have the
following:

Lemma 2. When applying CB to monitor f , the convex
bound should belong to some family of tight bounds of f .

In the following case, it is possible to define CB(f):

Lemma 3. Let f be a concave function. Then the family
of all tangent planes to f defines a family of tight bounds.1

Proof. Every tangent plane is linear, hence convex. Fur-
ther, it is known that a concave function lies under any of
its tangent planes. Now, let g be convex and g � f . Denote
by U(g) the set of all points above g′s graph, and by B(f)
all points below f ′s graph. Then both U(g), B(f) are convex,
and the minimal distance between them is therefore obtained
at points on their boundaries. The tangent plane at the point
on f ’s boundary is the desired element of CB(f). The idea
of the proof is outlined in Fig. 3.

Figure 3: A convex function g and concave function
f such that g � f . S is the segment connecting the
two closest points on the graphs. The tangent at
the closest point on f ’s graph, L, satisfies g � L � f ,
proving that the set of f ’s tangent planes is a tight
family of convex bounds.

3.2 The convexity gap and dependence on the
reference point

Replacing the monitored condition T ≥ f by T ≥ g � f ,
for a convex g, enables efficient monitoring – alas, it might
also result in potential false alarms (i.e. vectors u for which
T ≥ f(u) but T < g(u)). We refer to this problem as the
convexity gap, or simply the gap (referring to the gap between

1We deal here with differentiable functions, which in-
clude many functions of practical interest. Further, non-
differentiable functions can be arbitrarily approximated by
differentiable functions on any bounded domain.

f and g). Figuratively speaking, the “system price”, one must
pay in order to allow distributed monitoring, is reflected in
the“convexity price”, which is the gap between the monitored
function and its convex bound. To minimize the number of
false alarms, the gap should be minimized. However, as the
following simple example demonstrates, it is often impossible
to choose a single optimal g to achieve this goal. As depicted

Figure 4: The impossibility of choosing a single best
convex bound for the function f (dark curve). g1

(resp. g2) is better in the vicinity of p1 (resp. p2).

in Fig. 4, it is evident that, loosely speaking, different bounds
are better at different regions of the data space, and there is
typically no hope of finding a unique bound that is always
better than all the others. We formalize this observation
with the following definition, which is both realizable and
appropriate for the monitoring problem:

Definition 3. A convex bound g1 is better than g2 at a
point p iff there exists a neighborhood of p in which g2 � g1.

Thus, in Fig. 4, gi is better at pi for i = 1, 2.
Def. 3 is appropriate for the following reason. Recall that

the local condition at the i-th node is g(p0+di) ≤ T . Initially,
the drift vector di is equal to zero; assuming that the data
at the nodes behaves continuously, or can be approximated
by a random walk ([18, 14, 21, 22]), it follows that the local
vector p0 + di can be modeled by a continuous process which
starts at p0 and gradually wanders away from it. Therefore,
a bound is sought which is optimal (i.e. smaller than all
other bounds) in a certain neighborhood of p0. For the case
of a concave f , such a bound is provided by the following
result:

Lemma 4. If f is concave, the tangent plane at a point p
is the best convex bound at p.

The proof is trivial, since the tangent plane’s value at p
is equal to f(p), but all other tangent planes lie above f .
Thus the deviation of the tangent plane at p from the point
(p, f(p)) is quadratic; hence, locally, it is smaller than that
of the tangent planes at other points, which is linear. Con-
sequently, when bounding a concave function from above (or,
equivalently, a convex function from below), we will replace
it with its tangent plane at p0. This is next used to trans-
form a threshold condition on general functions to a convex
condition.

3.3 “Convexizing” threshold conditions
If the monitored f is itself convex, the choice of a convex

bound c is trivial – choose c = f . If f is concave, then,



following Lemma 4, the tangent plane at p0 is the optimal
candidate for c. We next handle a more general case.

Definition 4. : Assume that f = c1 − c2, where both
c1, c2 are convex. The convexization of the condition f ≤ T
is defined by c = c1 − Lc2(p0) ≤ T , where Lc2(p0) is the
tangent plane of c2 at p0.

Note that the c defined in Def. 4 is convex, bounds f from
above, and that its definition is motivated by the special
cases where f is convex or concave. The lower bound case is
similarly handled: the inequality f ≥ T is replaced by the
condition Lc1(p0)− c2 ≥ T (note that Lc1(p0)− c2 is concave
and bounds f from below).

We next prove that, for a very wide class of real problems,
it is always possible to express f as the difference of two
convex functions. First we recall a definition from calculus
that comes in handy for testing convexity:

Definition 5. Let f be a function of x1...xn. Its Hessian

Hf is the n× n matrix Hf (i, j) = ∂2f
∂xi∂xj

.

It is well known that a function is convex in a given domain
D iff its Hessian is positive semidefinite (PSD) at every point
in D2.

Lemma 5. If f possesses bounded second derivatives in a
domain D, it can be expressed as the difference of two convex
functions.

Proof. Since the elements of Hf are bounded over D,
there is an upper bound, Λ, on the absolute values of Hf ’s
negative eigenvalues. Define c1(u) = f(u) + Λ

2
||u||2, c2(u) =

Λ
2
||u||2. Clearly f = c1 − c2 and c2 is positive definite. Also,

Hc1 = Hf +Hc2 = Hf + ΛI (where I is the identity matrix).
Hence all the eigenvalues of Hc1 are ≥ 0 and c1 is convex.

All the functions we deal with in this paper either have
bounded second derivatives, or their derivatives are continu-
ous and the domain of interest is bounded; hence, Lemma 5 is
applicable. We will apply it for monitoring cosine similarity
(Section 4.3).

The process outlined in Lemma 5 can be extended to
provide a convex bound which is optimal to second order
Taylor expansion. First, let us formalize the concept of
“annihilating” negative eigenvalues:

Definition 6. Given a symmetric matrix A with spectral
decomposition [6] A =

∑
i λieie

t
i (where λi are A’s eigen-

values and ei its eigenvectors), define its positive part by
P (A) =

∑
i max{λi, 0}eieti.

Theorem 3 (whose proof is omitted due to lack of space)
enables to define a convex bound which is optimal to second
order.

Theorem 3. For a function f and reference point p0,
define a convex bound by copt(p) = f(p0) + 〈∇f(p0), p −
u0〉+ (1/2)(p− p0)P (Hf (p0))(p− p0)t. Then, for any other
convex bound g of f which satisfies g(p0) = f(p0), it holds
that Hg(p0) ≥ Hcopt(p0) (where ≥ holds for both the operator
and Frobenius norms of the respective Hessians). That is –
up to second order, copt(p) is an optimal convex bound at the
vicinity of p0.

2A matrix B is PSD iff uBut ≥ 0 for every vector u. A
symmetric matrix is PSD iff all its eigenvalues are ≥ 0.

3.3.1 Convexizing inequality constraints
Since c1 − c2 ≤ T iff c1 ≤ c2 + T , c3, we can assume that

the monitored condition is given as an inequality between
two convex functions, c1 ≤ c3. This condition is especially
amenable to convexization: we replace it with c1 ≤ Lc3(p0),
where, as before, Lc3(p0) is c3’s tangent plane at p0. We will
use this form of convexization for the inner product, cosine
similarity, and PCA-Score functions (Section 4).

4. APPLYING CB: THEORY
We now apply CB to monitor four popular functions: Pear-

son correlation coefficient, inner product, cosine similarity,
and PCA-Score (“effective dimension”). In Section 5 we com-
pare the run-time and communication overhead of CB and
GM in a variety of real scenarios.

To apply CB, we follow the method described in Section
3.3.1. If the monitored function cannot be directly written
as the difference of two convex functions (as in the case of
cosine similarity), we apply Lemma 5.

4.1 PCC
Let x, y denote the frequency of appearances of two items

in elements of a certain set, and z the frequency of their joint
appearances. A very typical example is when x, y denote
the ratio of documents in which certain terms appear, and z
the same for appearances of both terms simultaneously. The
range over which PCC is defined is therefore 0 ≤ x, y ≤ 1 and
z ≤ x, y. The function measures the strength of correlation
between the appearances of x and y, and is defined by

P (x, y, z) =
z − xy√

x− x2
√
y − y2

(1)

We will assume T > 0; the case T ≤ 0 is treated similarly.
The condition P (x, y, z) ≤ T can be written as

z ≤ xy + T
√
x− x2

√
y − y2. We convexize it as follows.

First, note that xy is neither convex nor concave; it is simple
to verify that the Hessian’s eigenvalues for xy are always 1
and −1 (i.e. every point on the function’s surface is a saddle

point). We therefore use the identity xy = (x+y)2

4
− (x−y)2

4
.

Denote Q1 = (x+y)2

4
, Q2 = (x−y)2

4
(note that Q1, Q2 are

convex). We also need the following:

Lemma 6. The function
√
x− x2

√
y − y2 is concave.

The proof is omitted due to lack of space.
The condition P (x, y, z) ≤ T can therefore be written as

(z − T
√
x− x2

√
y − y2 +Q2)−Q1 ≤ 0 (2)

and, since this last expression is the difference of two convex
functions3, we can proceed by applying the paradigm de-
scribed in Def. 4. The lower bound case is similarly handled.
It remains to calculate the tangent planes of
Q1, Q2,

√
x− x2

√
y − y2, but that is just an exercise in mul-

tivariate calculus. The bounds are depicted, for some typical
values, in Fig. 5.

4.1.1 Monitoring PCC with GM
As explained in Section 2.2, to apply GM we must be able

to solve the closest point problem for the surface defined by
z = xy + T

√
x− x2

√
y − y2. To this end we used dedicated

software [16], which first reduces the surface’s equation to

3Since T
√
x− x2

√
y − y2 is concave, its negative is convex.



(a) Upper Bound (b) Lower Bound

Figure 5: Left: a convex upper bound (blue) for
PCC (green). The reference point (in red) is x0 =
0.3, y0 = 0.6, and T = 0.4. Right: a concave lower
bound.

an algebraic one, and then solves for the closest point. This
incurred a run-time far higher than the simple CB solution
(by more than three orders of magnitude), and also resulted
in higher communication overhead; results are provided in
Section 5.2.1.

4.2 Inner product
The inner product function is also extensively applied in

data mining and monitoring tasks as a measure of similarity.
We assume that the monitored function f is over vectors of
length 2n, and is equal to the inner product of the first and
second halves of the vector; denoting the concatenation of
vectors x, y by [x, y], we have f([x, y]) = 〈x, y〉. To express f
as the difference of two convex functions, note that 4〈x, y〉 =
||x + y||2 − ||x − y||2. Since the norm squared function is
convex, the condition 〈x, y〉 ≤ T is convexized by

||x+ y||2 ≤ 4T + ||x0 − y0||2 + (3)

2〈[x0 − y0, y0 − x0], [x− x0, y − y0]〉

where the reference point p0 = [x0, y0], and the gradient
of ||x − y||2 is equal to 2[x − y, y − x] (recall that, for a
multivariate function f , the tangent plane at a point u0 is
given by f(u0) + 〈∇f(u0), u− u0〉).

4.2.1 Monitoring inner product with GM
In order to apply GM, one must be able to solve the closest

point problem for the threshold surface, 〈x, y〉 = T . If the
point outside the surface is denoted [x0, y0], the problem can
be formulated as

Minimize (||x− x0||2 + ||y − y0||2) such that 〈x, y〉 = T.

This problem can be solved with Lagrange multipliers. Defin-
ing F , ||x−x0||2 + ||y−y0||2 +2λ( 〈x, y〉−T ) The equations
∂F
∂x
, ∂F
∂y
, ∂F
∂λ

= 0 assume the form

(x− x0) + λy = 0, (y − y0) + λx = 0, 〈x, y〉 = T (4)

These equations can be manipulated to obtain a quartic
equation in λ:

Tλ4−(2T + 〈x0, y0〉)λ2+
(
||x0||2 + ||y0||2

)
λ−〈x0, y0〉+T = 0

After solving for λ, it is easy to solve for x, y.
While the inner product case is the only one addressed

here for which a relatively simple solution for GM could be

found, it still incurs the overhead of computing the quartic’s
coefficients, solving it, and checking the solutions to see
which one yields the closest point on the surface. GM’s
overall run-time was about 20 times higher than CB’s.

4.3 Cosine similarity
Another very popular measure of similarity is cosine simi-

larity (referred to as Csim hereafter), which resembles the
inner product function, but normalizes it by the length of
the vectors. For example, if we have two histograms of word
frequencies, derived from two document corpora, Csim will
“neutralize” the effect of the corpus size when measuring the
histogram similarity; the inner product function, however, is
biased towards larger corpora.

As in the inner product case, the data vector p is [x, y],
the concatenation of two n-dimensional vectors x, y, and the
reference point will be denoted p0 = [x0, y0]. Then, Csim

is defined by Csim(p) = 〈x,y〉
||x||||y|| . Thus, to monitor a lower

bound, i.e. Csim(p) ≥ T (we assume T > 0; the case of
negative T is similarly treated), we need to monitor the con-
dition 〈x, y〉 ≥ T ||x||||y||. This problem is more complicated
than the inner product case, since there is no obvious way
to decompose it into an inequality between two convex func-
tions; this is due to the fact that, while representing 〈x, y〉
as the difference of two convex functions is relatively easy, it
is more difficult to derive such a representation for ||x||||y||.
We therefore resort to using the method outlined in Lemma
5. We must first determine the smallest eigenvalue of the
Hessian of ||x||||y||. It follows from the following lemma that
it equals −1:

Lemma 7. At a point x, y, the eigenvalues of H(||x||||y||)
are 1, −1 (each with multiplicity one) and ||x||/||y||, ||y||/||x||
(each with multiplicity n− 1).

The proof is omitted due to lack of space. Now we can pro-
ceed to convexize the problem. First, we write the inequality
〈x, y〉 ≥ T ||x||||y|| as ||x+y||2 ≥ ||x−y||2 +4T ||x||||y||. Next,
to make both sides convex, we add 2T (||x||2 + ||y||2) to them,
to obtain

||x+ y||2 + 2T (||x||2 + ||y||2) ≥
||x− y||2 + 4T ||x||||y||+ 2T (||x||2 + ||y||2)

Lastly, the inequality is convexized by replacing the RHS
with its tangent plane at p0. This step is straightforward,
requiring only computation of the gradient, and is omitted
for brevity.

4.3.1 Monitoring Csim with GM
The problem of calculating the distance of a point to

the Csim surface {[x, y]|〈x, y〉 = T ||x||||y||} is exceedingly
difficult. No closed-form solution exists, and three different
software packages we applied took about three minutes to
complete the task for a single point.

4.4 PCA-Score
PCA (Principal Component Analysis) is a fundamental

dimension reduction technique with numerous applications.
Given a set of vectors in Euclidean space, PCA seeks a low-
dimensional subspace which, on the average, well-approximates
the vectors in the set. Formally:

Definition 7. Given 1 > T > 0 (typically T ≈ 0.9) and
a finite set of vectors S ⊂ Rm, the effective dimension of S



is defined as the smallest dimension of a sub-space V ⊂ Rm,

such that
∑
u∈S

||PV (u)||2 ≥ T
∑
u∈S

||u||2, where PV (u) is the

projection of u on V 4.

It is well-known that the effective dimension, denoted k
hereafter, can be computed as follows:

1. Construct the m×m scatter matrix M =
∑
u∈S

uut. Note

that in the distributed setup, S is equal to the sum of
local scatter matrices at the nodes.

2. Compute M ’s eigenvalues, λ1 ≥ λ2 ≥ ... ≥ λm.

3. Determining the smallest k such that
∑

1≤i≤k

λ2
i ≥ T

∑
1≤i≤m

λ2
i .

In [23], PCA was applied to measure the health of a system
consisting of distributed nodes. This proceeds as follows:
at each timestep, a vector of various system parameters is
associated with each node (typically, the vectors’ components
are various traffic volume indicators). System-wide anomalies
(i.e. DDOS attacks) are highly correlated with an increase in
the effective dimension of the union of the parameter vectors
over all nodes, in a sliding window of pre-determined length.

Hence, the condition to monitor is that the PCA-Score, de-

fined by (
∑

1≤i≤k

λ2
i )/(

∑
1≤i≤m

λ2
i ), is greater than some threshold

T . As for the previous functions we handled, the difficulty
lies in that λi are the eigenvalues of a global matrix which is
equal to the sum of the local matrices, hence its exact com-
putation at every timestep will incur a huge communication
overhead. In order to apply CB for distributed monitoring,
we must express the PCA-Score as a function of the average
matrix, as opposed to the sum; however, since (i) eigenvalues
scale linearly when the matrix is multiplied by a scalar, and
(ii) the PCA-Score is defined as the ratio of sums of squares
of eigenvalues, its values on the average and sum matrices
are equal.

What remains is to “convexize” the inequality∑
1≤i≤k

λ2
i ≥ T

∑
1≤i≤m

λ2
i . (5)

We rely on the following two lemmas:

Lemma 8. For an m×m scatter matrix S,
∑

1≤i≤m

λ2
i equals

Tr2(S), and is a convex function of S. The proof follows
immediately from the fact that every scatter matrix is sym-
metric.

Lemma 9. For a symmetric S,
∑

1≤i≤k

λ2
i is convex.

Proof. This follows from the famous Fan identities, specif-
ically Theorem 2 in [11].

Since both sides of Eq. 5 are convex, we can proceed as in
Section 3.3.1, by replacing the LHS with the tangent plane
at the reference scatter matrix S0. All that is required is
to compute the gradient of the LHS; for that, we use the
following result from linear algebra.

4We assume that S is centralized, i.e. its average is zero. The
general case proceeds along the same lines and is omitted
due to lack of space.

Lemma 10. The derivative of λi with respect to S is equal
to eie

t
i, where ei is the eigenvector of S corresponding to λi.

Hence, the monitored condition in Eq. 5 is convexized by∑
1≤i≤k

λ2
i (S0)+2〈

∑
1≤i≤k

λi(S0)ei(S0)eti(S0), S−S0〉 ≥ T (Tr(S2))

(6)
where S0 is the reference matrix, and S the local matrix.

4.4.1 Monitoring PCA-Score with GM
In order to apply GM, we must be able to compute the

minimal PCA-Score over all matrices in a sphere in the m2-
dimensional space of m × m matrices. This can be done
using perturbative bounds that were applied in [17], which
also addressed monitoring the health of a distributed system.
We also tested a simpler method, analogous to the ones used
in [17], in which the safe-zone is defined by the maximal
sphere around the reference matrix which is contained in
the admissible region. Both methods require bounding the
change in the eigenvalues, given the magnitude of change in
the matrix. Two such perturbative bounds can be applied,
which relate the change in the eigenvalues to the Frobenius
norm or the spectral norm of the change in the matrix. We
refer to the algorithms which use the Frobenius norm resp.
spectral norm as FN resp. SN (a detailed description is
impossible due to lack of space). We note, however, that all
these methods (GM, FN, SN) require solving the difficult
problem of finding the closest point on the surface of matrices
whose PCA-Score equals T ; this renders them slower than
CB. Further, CB was better in reducing communication
overhead. Details are provided in Section 5.2.4.

5. EXPERIMENTAL EVALUATION
In the experiments, CB was applied to the tasks of monitor-

ing the functions discussed in Section 4, over a few datasets
and for different threshold values. For the PCC, Csim and
inner product functions we compared CB to GM. To the best
of our knowledge, GM represents the state-of-the-art in mon-
itoring threshold queries over distributed streams. We are
not aware of any other work on monitoring cosine similarity
and the PCC, and while there is other work on monitoring
the inner product [10], GM improved on it [12]. For the
PCA-score function we compared CB to GM as well as to the
Frobenius norm (FN) and spectral norm (SN) perturbative
bounds described in [17].

We examined the sliding window scenario, in which the
data of interest are the last m records for some pre-defined
m (or the last records received within a certain period); for
example, one may wish to continuously monitor only the
last 1000 tweets in a tweet stream. The sliding window case
corresponds to the turnstile model, in which the data vector’s
entries can both increase and decrease, and is more general
than the cash register model, in which the entries can only
increase.

In all the experiments, CB outperformed the other methods
in both communication reduction and run-time, with the
improvement factor in run-time being orders of magnitude
for PCC, cosine similarity, and PCA-Score.

5.1 Data
We used three data sets: the Reuters Corpus (RCV1-v2,

REU), a Twitter crawl (Dataset-UDI-TwitterCrawl-Aug2012,
TWIT), and the 10 percent sample supplied as part of KDD



Cup 1999 Data (KC). The overall sizes of these data sets
were: REU 374MB, TWIT 691MB, KC 46MB.

REU consists of 804,414 news stories, produced by Reuters
between August 20, 1996, and August 19, 1997. Each story
was categorized according to its content. A total of 47,236
features were extracted from the documents and indexed.
Each document is represented as a vector of the features it
contains.

TWIT is a subset of Twitter, containing 284 million fol-
lower relationships, 3 million user profiles, and 50 million
tweets. We filtered the dataset to obtain only hashtagged
tweets, which left us with 9 million tweets from 140,000 users.
For each tweet, the dataset contains information about the
tweet content, ID, creation time, re-tweet count, favorites,
hashtags and URLs.

KC was used in the “Third International Knowledge Dis-
covery and Data Mining Tools Competition”. It contains
information about TCP connections. Each connection is
described by 41 features, such as duration, protocol, bytes
sent, bytes received etc.

For all data sets, in order to simulate multiple streams,
we distributed the data between the nodes in round-robin
fashion. Results are presented for 10 streams, and in Section
5.3 we present some results for communication reduction for
up to 1,000 streams (the reduction in computational overhead
does not depend on the number of streams).

5.2 Computational overhead reduction
Next we summarize the main results of this paper – the

reduction in running-time for monitoring the four functions
discussed in Section 4. Then we briefly summarize the com-
munication reduction results.

In Fig. 6 we present a summary of the running times for
GM and CB, on the various functions and data-sets; details
are provided in Sections 5.2.1 to 5.2.4.
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Figure 6: Running times for a local condition check.
“SN” and “FN” stand for previous methods to moni-
tor PCA-Score (see Section 5.2.4). Note logarithmic
scale.

5.2.1 Pearson correlation coefficient
We evaluated PCC on REU, where every document may be

labeled as belonging to several categories. The most frequent
category is “CCAT” (the “CORPORATE/INDUSTRIAL”
category). In the experiments our goal was to select features
that are most relevant to this category, i.e. whose PCC with
the category is above a given T . Each node holds a sliding

window containing the last 6,700 documents it received (this
is roughly the number of documents received in a month).
We monitored the correlation of “CCAT” with the features
“Bosnia” and “Febru”.
Run-time evaluation. The majority of GM’s run-time is
spent on testing for sphere intersection with the PCC surface.
To solve this problem we used the Gloptipoly global opti-
mization package [16]. In CB, the local conditions for PCC
monitoring are very simple, and only require computing the
functions composing the PCC and their derivatives (Section
4.1).

The experiments demonstrated that the run-time of check-
ing the local condition a single time, for the CB method,
is almost four orders of magnitude lower than for GM (see
Table 1). Note – to reduce space, the tables also include
results for inner product and Csim5.

Function Dim
Run-time (sec.)

Speedup
GM CB

PCC 3 0.58 0.67E-04 8657.7
Inner-Prod 2050 27.4E-04 1.35E-04 20.3
Inner-Prod 1250 18.2E-04 0.89E-04 20.45

Csim 100 170 1.67E-04 1,020,000

Table 1: Run-time for checking the local condition
CB vs. GM.

5.2.2 Inner product
We monitored the inner product on REU and TWIT. As in

[12], we calculated the inner product of feature vectors from
two streams (created by splitting the records). For REU,
we used the top 2050 features left after removing features
which appear in less than 1% of the documents. We used the
NLTK [5] package to tokenize and stem the tweets in TWIT,
and then selected the top 1250 features, ignoring features
appearing in less than 0.1% of the tweets.

In the REU experiment, each node held a sliding window
of the last 6,700 documents, while in TWIT each node held
a sliding window containing the last 1000 tweets. We used
threshold values between 7000 and 17000 for TWIT, and
between 4.9E7 to 5.5E7 for REU.

Run-time evaluation. Although GM requires no
optimization to find the closest point on the surface, but
only to solve a quartic equation, CB checks local conditions
about 20 times faster than GM (see Table 1); this is due to
the time required to construct and solve the equation, and
then check the distinct solutions to see which one yields the
closest point. Checking the local conditions requires more
time for the REU, since the feature vectors are longer (2050
vs. 1250).

5.2.3 Cosine similarity
To evaluate the computational overhead for the cosine

similarity function, we monitored both REU and TWIT.
Data was the same as for the inner product experiments (see
Section 5.2.2 for more details).

Run-time evaluation. The run-time of checking a
local condition a single time in GM is almost 3 minutes,
while for CB it is less than 0.2 milliseconds (See Table 1).

5In the PCA-Score experiments (Section 5.2.4) we compared
CB to three different methods, hence the results are provided
separately; see Table 2.



5.2.4 PCA-Score
For monitoring the PCA-Score function, we compared

CB with GM as well as methods based on the Frobenius
norm (FN) and spectral norm (SN) perturbative bounds,
described in [17] (see also Section 4.4). All methods except
CB require solving complex optimization problems, which
were implemented using Matlab and the CVXOPT package
[1].

We monitored the PCA-Score over KC using 10 nodes,
each holding a sliding window of the last 100 feature vectors.
We ran experiments with threshold values T ranging between
0.8 and 0.95, and effective dimension values ranging from 3
to 6.

The experiments show that the three methods which were
compared with CB – SN, FN and GM – offer a trade-off
between communication cost and run-time.

GM achieves the best communication cost of the three but
is also the slowest method. FN is faster than GM but its
communication cost is slightly higher. SN is the faster of the
three by far, but it achieves relatively poor communication
reduction. CB improves on all three methods, achieving
better communication cost than GM and better run-time
than SN.

Run-time evaluation. Run-time results for monitoring
the PCA-Score are displayed in Table 2. The table shows
average run-time of a single round of each method the as
well as the speedup factor achieved by CB.

CB is about 3 times faster than SN, two orders of magni-
tude faster than FN, and three orders of magnitude faster
than GM. Note that while SN’s runtime results are better
than GM’s, it achieves a rather poor reduction in communi-
cation (Fig. 7)

CB SN FN GM

run-time 0.0086 0.027 2.01 9.57
CB speedup 1 3.20 232.81 1105.95

Table 2: Run-times (seconds) for monitoring the
PCA-Score over KC.

5.3 Communication overhead reduction
While the work presented here focuses on reducing com-

putational overhead, we also briefly provide results on its
performance in reducing overall communication. To eval-
uate the communication cost, we measured the number of
messages sent. The naive method, in which every message
is sent to the coordinator, is used as a common baseline.
At the opposite extreme, we compared to a hypothetical
algorithm, which alerts only when the threshold condition is
locally violated, i.e. when f(vi) ≥ T for some local vector
vi. Clearly, every monitoring algorithm will have to alert
in such a case. However, to maintain correctness, the local
conditions have to adhere to the more restrictive constraint
f( v1+...+vk

k
) ≤ T . Since the constraints of every correct

algorithm are more restrictive, it will issue more alerts, lead-
ing to a higher communication cost (unless, of course, f is
convex). We refer to this super-optimal bound – the number
of local violations – as RLV (real local violations); if the ratio
between the number of messages sent by a certain algorithm
and the number RLV sent is close to 1, then this algorithm
can hardly be improved.

Figure 7 shows a summary of the communication required
by CB, GM, and RLV for the functions we studied as well as

SN and FN for the PCA-Score function. Each bar represents
the results across multiple thresholds and datasets. CB is
always better than GM. In most cases CB is close to the
super-optimal lower bound RLV, meaning it can be hardly
be improved. Note that while FN and SN achieved better
runtimes than GM (Table 2) they have higher communication
costs. CB did better than the competing methods (GM, FN,
SN) in both runtime and communication costs.
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Figure 7: Communication reduction summary
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We also tested the effect of the window size on the com-
munication cost (Fig. 8). The results can be explained by
the slower change in the function’s value when the window
size increases, thus making the monitoring problem easier.
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To test the scalability of CB, we ran experiments with up
to 1,000 nodes. Fig. 9 shows the results. The advantage of
both CB and GM (and RLV) over the naive grows with the
number of nodes, while CB maintains its superiority over
GM.
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6. CONCLUSIONS
We presented a new method, CB, to monitor threshold

functions over distributed streams. The novelty lies in that
the monitoring takes place directly over functions, as opposed
to previous methods which require solving very difficult opti-
mization problems.

We presented a general paradigm for implementing CB and
demonstrated its superiority over previously known methods
for four important functions, achieving one to six orders of
magnitude run-time improvement, while also reducing the
communication cost.

With the move towards the Internet of things, smart-home,
smart-cities etc., the deployment of resource-constrained de-
vices is expected to exponentially increase. Systems com-
posed of these devices will have to perform complex monitor-
ing tasks in real-time; hence, the need for computationally
efficient solutions, such as the one presented here, is expected
to increase.

Future work will concentrate on further applications, as
well as on more theoretical directions, e.g. studying alterna-
tive methods to “convexize” monitoring problems.
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