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As data becomes dynamic, large, and distributed, there is increasing demand for what have become known as

distributed stream algorithms. Since continuously collecting the data to a central server and processing it there

is infeasible, a common approach is to define local conditions at the distributed nodes, such that – as long as

they are maintained – some desirable global condition holds.

Previous methods derived local conditions focusing on communication efficiency. While proving very useful

for reducing the communication volume, these local conditions often suffer from heavy computational burden

at the nodes. The computational complexity of the local conditions affects both the run-time and the energy

consumption. These are especially critical for resource-limited devices like smartphones and sensor nodes.

Such devices are becoming more ubiquitous due to the recent trend towards smart cities and the Internet of

Things (IoT). To accommodate for high data rates and limited resources of these devices, it is crucial that the

local conditions be quickly and efficiently evaluated.

Here we propose a novel approach, designated CB (for Convex/Concave Bounds). CB defines local conditions

using suitably chosen convex and concave functions. Lightweight and simple, these local conditions can be

rapidly checked on the fly. CB’s superiority over the state-of-the-art is demonstrated in its reduced run-time

and power consumption, by up to six orders of magnitude in some cases. As an added bonus, CB also reduced

communication overhead in all the tested application scenarios.

CCS Concepts: • Computing methodologies → Distributed algorithms; • Information systems →

Data stream mining; Parallel and distributed DBMSs;

Additional Key Words and Phrases: Disributed Stream Mining, Continuous Distributed Monitoring

ACM Reference Format:
Anonymous Author(s). 2017. Lightweight Monitoring of Distributed Streams. ACM Trans. Datab. Syst. 1, 1
(September 2017), 36 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Continuous, real-time processing of vast amounts of rapidly changing data lies at the heart of

many modern and emerging applications. Examples include health monitoring over the IoT [30],

smart city infrastructures [32], financial data analysis [62, 63], social media stream mining for

recommendation systems [4], and other application scenarios.

The distributed nature of the data streams, the massive amount of information they carry, as

well as the real-time processing requirements introduce some fundamental challenges. The main

challenge is reducing communication volume [12, 13, 37]. Continuously collecting the data to a

central location is infeasible in large scale applications, as the excess communication required

interferes with the normal operation of the data network [35]. Furthermore, in the case of battery

operated devices such as WSN sensor nodes, central data accumulation depletes the power supply

of individual devices, reducing the network lifetime [44]. Another key challenge is processing high

speed data streams given the run-time limitations of the remote sites [11]. This is especially true

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.

0362-5915/2017/9-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Database Systems, Vol. 1, No. 1, Article . Publication date: September 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


:2 Anon.

for resource-limited devices such as sensor nodes, where the CPU is weak and memory and storage

are scarce.

Continuous data stream systems require different processing paradigms than traditional systems

where persistent data sets are stored [3]. Instead of traditional one-shot queries, continuous queries [3,
57] are issued by the user. The system continuously evaluates these queries, providing the user

with updated results.

An important class of distributed continuous queries are the threshold monitoring queries. A

threshold on the value of a function over the union of the distributed stream is defined, and the

system must issue an alert when this threshold is crossed [28, 31, 35, 57, 58]. Examples include

detecting when the sum of a distributed set of variables exceeds a predetermined threshold [14], or

checking whether the value of the information gain function globally exceeds a given threshold in

order to detect spam in distributed mail system [57].

The problem of effectively evaluating threshold monitoring queries over continuous distributed

streams is known as the distributed monitoring problem (also referred to as the functional monitoring
problem, [8, 51, 60]; see also the survey in [10]). It can be broadly defined as follows:

Definition 1.1. Given is a distributed system, with nodes N1...Nk , with Ni holding a dynamic

data vector vi (t) (t will be suppressed hereafter to reduce equation clutter). Also given is a function

f , which depends on all the vi ’s, and a threshold T . The goal is to define local conditions at the
nodes, such that:

• Correctness: As long as all local conditions hold, the global condition f (v1...vk ) ≤ T is also

guaranteed to hold.

• Communication efficiency: The local conditions are “lenient”, i.e., the number of times they

are violated is minimal.

• Computational efficiency: The complexity of checking the local conditions is minimal.

As a motivating real-life example, which applies the Pearson Correlation Coefficient function

(treated in this paper), consider a distributed sensor network used to monitor air quality [47].

Often, not only is the information on the individual pollutants important but also the correlations
between them. For example, if an event i is defined as pollutant i crossing a certain threshold,

one may wish to know whether there exists a correlation between events i, j for two different

pollutants. A commonly used measure, the Pearson Correlation Coefficient (PCC), quantifies such
a correlation by the value

z−xy
√
x−x 2

√
y−y2

, where x ,y, z are respective the probabilities of event i ,

event j, and both events simultaneously. For a distributed system, the global probabilities are

averaged over the nodes. It is easy, however, to see that the PCC value of the global probabilities
can be above a given threshold T , while the local value at some of the nodes is below T , and vice

versa (for example, in a system with two nodes and local values x1 = 0.8,y1 = 0.2, z1 = 0.17 and

x2 = 0.2,y2 = 0.7, z2 = 0.15, the local PCC values are 0.062 and 0.054, and the global value is −0.26).

This is because, for arbitrary functions, there is generally no correlation between the average of the
values and the value at the average.

For general functions, defined over a distributed system, it is typically impossible to determine

the position of their global values vis a vis T , when given just the local values. The distributed

monitoring problem is to impose local conditions guaranteeing that the global value did not crossT .
This problem is known to be rather difficult (NP-complete even in very simple scenarios; see [36]).

Nonetheless, considerable progress has been made for real-life problems (Section 2).

Sharfman et al. [57] introduced a distributed model where the monitored query can be expressed

as the application of an arbitrary function to the aggregated vector
v1+..+vk

k , i.e. f = f (v1+..+vk
k )

(see Figure 1). This model turns out to be rich enough to be applicable to a wide range of problems
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(see Section 2.1). Further, it can be extended by augmenting the local vectors by various functions

of the coordinates, allowing it to handle a rather wide class of functions [9, 19].

While considerable progress was made in reducing the communication cost in this distributed

model, computational cost reduction received little attention. Our goal in this work is to improve

the computational cost while maintaining communication costs similar to those attained by the

state-of-the-art. Our evaluations show that our method not only improved run-time by up to six

orders of magnitude, but it also achieved better communication costs than previous work.

��������

�

��������

�
∑ ��

�
≤ � ?

Fig. 1. Distributed monitoring model: Distributed streams Si continuously update the local vectors vi . The
coordinator C must issue an alert when the global condition f (v1+..+vk

k ) ≤ T is breached.

To reduce the computational complexity, we propose here a simple and direct method to solve

the distributed monitoring problem. It relies on the simple observation that, if f is a convex function,
then, if f (vi ) ≤ T holds at every node, it also holds that f (v1+..+vk

k ) ≤ T . Thus, monitoring a convex

function (from above) is trivial – just monitor its value at every node.

To handle a general f , we propose to search for a convex function c such that c(u) ≥ f (u)
for all vectors u, and monitor the condition c ≤ T . This yields a simple monitoring condition,

whose correctness implies the correctness of the desired condition f ≤ T . Naturally, the following
conditions should hold:

• c should be easy to derive and calculate.

• In order to avoid a high ratio of “false alarms”, c should tightly bound f .1

We refer to the proposed method as convex bound (CB). Clearly, f ≥ T can be similarly monitored

by finding a concave lower bound.
The recent trend towards smart cities and the Internet of Things (IoT) depends to a large extent

on the deployment of ubiquitous nodes built of sensors and reduced computation systems. Such

nodes, which we refer to as “thin”, are extremely resource-constrained. They have reduced CPU

capabilities, small memory, and limited local storage. In addition, they often have to communicate

over wireless media, and may be powered by batteries – which means they will be highly restricted

by energy considerations. In smart environments, however, resource-limited nodes are expected

to support important collaborative, continuous monitoring tasks. We believe that the CB method

introduced here, being both lightweight and communication efficient, will enable this goal.

In this article we make the following contributions: (1) we introduce the CB method and apply

it to monitor four popular functions – the Pearson correlation coefficient (PCC hereafter), inner

product, cosine similarity, and PCA-Score; (2) we experimentally validate CB against state-of-the-art

1
As will be shown later, the choice of c also depends on the initial value of the average vector

v1+. .+vk
k .
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methods, demonstrating CB’s superiority in both computation and communication costs; (3) we

implement CB on resource-limited devices, which results in significant savings in battery lifetime.

2 RELATEDWORK
Much early work on monitoring distributed streams dealt with the simpler cases of linear functions

[34, 35], as well as monotonic functions [45], and counting distinct elements [5]. Non-monotonic

functions were addressed in [53] by representing them as a difference of monotonic functions.

Distributed sensor networks were studied in [48, 49, 56]. Other work included top-k monitoring [2],

distributed monitoring of the value of a single-variable polynomial [54], and perturbative analysis

of eigenvalues, which was applied to determine local conditions on traffic volume data at the nodes

of a distributed system, in order to monitor system health [28]. In [59], the monitoring problem

was studied in a probabilistic setting, and in addition to the function’s score, a probability threshold

was applied; see also [42]. Monitoring entropy was studied in [1]. Ratio queries were handled in

[25]. In [61] the norm of the average vector was monitored.

While some problems in monitoring over distributed systems were treated in the past, we are not

aware of any general method (capable of handling arbitrary non-linear, non-monotonic, non-convex

functions) except for geometric monitoring (GM) and its derivatives, which are surveyed next.

2.1 Previous Work on Geometric Monitoring
In [55, 57] a general approach, geometric monitoring (GM), was proposed for tracking the value of a

general function over distributed streams. GM rests on a geometric result, the so-called bounding
lemma (details follow in this subsection), which makes it possible to “break up” a global threshold

query into conditions that can be checked locally at each site. Follow-up work [37] proposed various

extensions to the basic method.

GM achieved impressive results in reducing communication overhead for a nice range of central

problems, including efficient outlier detection in sensor networks [9]; sketch-based monitoring

of norm, range-aggregate, and join-aggregate queries over distributed streams [20]; efficiently

computing and tracking skylines in a distributed setting [50]; tracking least squares regression

models [17]; reducing channel state information in distributed networks [29]; and approximating

entropy of distributed streams [18]. Other recent work included an extension to predictive data

modeling [21, 22], treatment of heterogeneous streams [36], and a privacy-preserving variant [16].

We use GM as a baseline for our comparison since it achieved state-of-the-art results in reducing

communication overhead where applied. Unfortunately, its application is typically hampered by

high computational overhead at the nodes. It is this problem which the proposed CB approach aims

to alleviate. GM is briefly described next. Proofs and further details can be found in [37] (which is

the version that was implemented).

A brief view of GM. Recall that the distributed monitoring problem considers whether

f (v1+..+vk
k ) ≤ T , where {vi } denote the local dynamic data vectors at the nodes. GM rests on the

following geometric interpretation of this question: define the admissible region, A, by
A , {u | f (u) ≤ T }. Then, the question is whether the condition

v1+..+vk
k ∈ A holds. The first step

in answering this question is the following:

Lemma 2.1. [57] Let vi (0) denote the initial value of the data vector at the i-th node, and let the
so-called reference point, p0, be equal to the average of these initial values: p0 =

v1(0)+..+vk (0)
k . We

assume that, during the initial synchronization, a coordinator node broadcasts p0 to all nodes. Denote
the change in the data vector at the i-th node, i.e., vi − vi (0), by di (it will be referred to as the i-th
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drift vector). Then, the following holds:

v =
v1 + .. +vk

k
=

(p0 + d1) + .. + (p0 + dk )

k
. �

Now, the i-th node can independently compute p0 + di , and since the global vector v is equal

to the average of p0 + di , i = 1..k , it obviously lies in their convex hull
2
. It is therefore desirable

to impose local conditions on p0 + di , which will guarantee that v ∈ A. This is achieved by the

bounding lemma:

Theorem 2.2. [57] Let Bi denote the (solid) sphere with center p0 + di/2 and radius ∥di ∥/2. Then

the union
k⋃
i=1

Bi contains the convex hull of the vectors p0,p0 + d1...p0 + dk ; hence it contains v .

As a result of the bounding lemma, the local condition used in GM is the following: node i
remains silent as long as its sphere Bi is contained inA (Figure 2). If this condition is violated – that

is, Bi intersects the inadmissible region3 Ā, the system enters a violation recovery phase (Section 3.6).

Fig. 2. Applying local conditions in GM. The drift vector di causes a violation, since the sphere it defines with
p0 intersects the inadmissible region Ā; however, dj does not cause a violation.

2.2 Computational Complexity of GM
To apply GM, it must be repeatedly checked whether a certain sphere intersects with Ā – that is,

whether its radius is smaller than the distance from its center to A’s boundary, which is defined by

the threshold surface {u | f (u) = T }. Finding the distance from a point to a threshold surface of a

general function is notoriously difficult, and a closed-form solution very rarely exists. Worse, there

exist no algorithms which guarantee that the distance (and the closest point) will be found for every

function. Even for the case of a polynomial f , the solution may require an inordinate amount of

time; closed-form solutions are often impossible to derive, and iterative schemes are slow and not

guaranteed to converge (see a recent survey in [52]). For example, using state-of-the-art solvers to

find the closest point to the surface defined by the cosine similarity function (Section 4.3), required

roughly three minutes, and a closed-form solution does not exist even for the lowest-dimensional

case (cosine similarity between two-dimensional vectors). Known upper bounds on the complexity

of the closest point problem are extremely high. Solving via Lagrange multipliers yields a system

of equations, which may be very difficult to solve even for the relatively simple case in which

2
A brief reminder of some basic notions concerning convexity is provided in Section 3.1.

3
The inadmissible region marked by Ā is the complement of the admissible region, A.
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the surface is described by an algebraic equation; upper bounds on the complexity are doubly

exponential in the number of variables
4
.

In [40], GM was extended by the convex decomposition (CD) approach, which works by decom-

posing Ā into convex subsets, and applied to monitor sketches over distributed streams. However,

the resulting algorithm has to be specifically tailored to each monitored function, and it suffers

from the need to solve the same type of problem as GM (finding the closest point on a surface). For

the inner product function, the solution was quite complicated, and we could not apply CD to the

PCC or to cosine similarity, which are easily treated by CB. In Section A.1 we explain why CD is

inappropriate for handling general functions as those treated here.

Clearly, run-times such as those often incurred by GM are unacceptable for many distributed

streaming systems, especially those over resource-limited nodes. We now present CB, and demon-

strate its advantage over GM for four popular functions.

A conference version of this work appeared in [64] where the initial CB framework was presented.

This version includes important proofs missing from the conference version; a deeper discussion

concerning communication reduction; and a more extensive evaluation, including comparison to

the new CSZ method [39], and power consumption results on resource limited devices.

3 THE CB METHOD
In this section we present the main idea behind the CB method and prove some results concerning

its application. We begin with some basic facts pertaining to convex sets and functions, which will

be required later (see [7]).

3.1 Convexity – a Brief Reminder
A set is convex iff it satisfies the following property: if two points are inside it, so is the line segment

between them. A function is convex iff the region above its graph is convex. Formally:

(1) A convex combination of points ui in Euclidean space is an expression of the form

∑
i λiui ,

where the λi ’s are positive scalars whose sum equals 1.

(2) A set will be called convex if it contains all the convex combinations of all its finite subsets.

(3) The convex hull of a set B is the smallest (w.r.t. inclusion) convex set which contains B.
(4) A real-valued function f will be called convex iff, for every convex combination

∑
i λiui , the

following holds: f (
∑

i λiui ) ≤
∑

i λi f (ui ).
(5) For every convex function and every threshold T , the set {u | f (u) ≤ T } is convex.
(6) f will be called concave iff (−f ) is convex.
(7) If f is convex (resp. concave), it lies above (resp. below) all its tangent planes.

3.2 Basics of CB
As noted in the Introduction, it is easy to define local conditions for the monitoring problem (Def.

1.1) when f is convex: every node i must only check the condition f (p0 + di ) ≤ T (correctness

follows immediately from Lemma 2.1 and property 4 in Section 3.1). We propose to extend this

simple observation to monitor arbitrary functions, using an approach that works directly in the

realm of functions, as opposed to seeking a geometric solution. The proposed solution works by

“relaxing” f to a convex function c that bounds f from above and monitoring the condition c ≤ T .
This condition implies f ≤ T and is also easy to monitor. We shall refer to c as a convex bound for
f . Figure 3 schematically demonstrates the idea behind CB.

The next theorem states that every solution which GM provides is also realizable as a solution

provided by CB.

4
See survey in http://tinyurl.com/lr4zhrk.
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Fig. 3. c(x) = x2 + 10 (blue curve) is a convex bound for f (x) = x2 + 10 sin(x) (dark curve). Given a threshold
T , c(x) ≤ T implies f (x) ≤ T .

Theorem 3.1. For every monitoring problem, there is a solution obtained with CB which is exactly
identical to the solution obtained with GM – that is, it imposes exactly the same local conditions.

Proof. Let f ≤ T be any monitoring problem. As proven in previous work (i.e., [37]), the GM

monitoring algorithm defines some convex subset of the admissible region A, call it C , and then

checks whether p0+di ∈ C . In other words, the sphere containment condition (Section 2.1, Figure 2)

describes a convex subset of the admissible region.

We seek to prove that any suchC can be realized in the CB framework, i.e., there exists a convex

bound c ≻ f such that, for any point u, u ∈ C iff c(u) ≤ T .
Such a function c can be defined using the distance transform for the set C . We recall that this

function – denoted dC – is defined as follows: if u ∈ C then dC (u) = 0, and if u < C then dC (u) is
the distance from u to C , i.e., the distance from u to the closest point in C . Then, we simply define

c(u) = T +dC (u). Clearly, c ≤ T exactly onT , and c ≻ f onC . The function c looks like a bowl with
a bottom in the shape of C; see Figure 4.

To conclude the proof, we only need the following lemma [46]:

Lemma 3.2. The distance transform of a convex set is convex.

�

3.3 Choosing Convex Bounds
There are, of course, an infinite number of convex bounds for f , and the question is which of them

to choose. To this end, we first propose the following definition.

Definition 3.3. Let f be the monitored function. A tight family of convex bounds for f , denoted
CB(f ), is a set of convex functions satisfying the following requirements:

• д ∈ CB(f ) implies that д is convex and, for every u, д(u) ≥ f (u) (the last condition will be

denoted д ≻ f ).
• Let c be any convex function such that c ≻ f . Then there exists д ∈ CB(f ) such that д ≺ c .
• If д1,д2 ∈ CB, then neither д1 ≺ д2 nor д2 ≺ д1.

Clearly, if д1,д2 are both convex bounds for f , and д1 ≺ д2, it is better to use д1 when monitoring

f (since the condition д2(v) ≤ T is weaker than д1(v) ≤ T ). Therefore we have the following:

ACM Transactions on Database Systems, Vol. 1, No. 1, Article . Publication date: September 2017.
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Fig. 4. A schematic description for the proof of Theorem 3.1. The setC is the ellipse,T = 2, and the function c
is the blue surface; it is convex, and further, it is ≥ T exactly inside C . Such a function can be built for every
convex C .

Lemma 3.4. When applying CB to monitor f , the convex bound should belong to some family of
tight bounds of f .

In the following case, it is possible to define CB(f ):

Lemma 3.5. Let f be a concave function. Then the family of all tangent planes to f defines a family
of tight bounds.5

Proof. Every tangent plane is linear, hence convex. Further, it is known that a concave function

lies under any of its tangent planes. Now, let д be convex and д ≻ f . Denote byU (д) the set of all
points above д′s graph, and by B(f ) all points below f ′s graph. Then both U (д),B(f ) are convex,
and the minimal distance between them is therefore obtained at points on their boundaries. The

tangent plane at the point on f ’s boundary is the desired element of CB(f ). The idea of the proof
is outlined in Figure 5. �

3.4 The Convexity Gap and Dependence on the Reference Point
Replacing the monitored condition f ≤ T by f ≺ д ≤ T , for a convexд, enables efficient monitoring;

alas, it might also result in potential false alarms (i.e., vectors u for which f (u) ≤ T but д(u) > T ).
We refer to this problem as the convexity gap, or simply the gap (referring to the gap between f and

д). Intuitively, the “system price” one must pay in order to allow distributed monitoring is reflected

in the “convexity price”, which is the gap between the monitored function and its convex bound.

To minimize the number of false alarms, the gap should be minimized. However, as the following

simple example demonstrates, it is often impossible to choose a single optimal д to achieve this

goal. As depicted in Figure 6, it is evident that, loosely speaking, different bounds are better at

different regions of the data space, and there is typically no hope of finding a unique bound that

is always better than all the others. We formalize this observation with the following definition,

which is both realizable and appropriate for the monitoring problem:

5
We deal here with differentiable functions, which include many functions of practical interest. Further, non-differentiable

functions can be arbitrarily approximated by differentiable functions on any bounded domain.
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Fig. 5. A convex function д and concave function f such that д ≻ f . S is the segment connecting the two
closest points on the graphs. The tangent at the closest point on f ’s graph, L, satisfies д ≻ L ≻ f , proving
that the set of f ’s tangent planes is a tight family of convex bounds.

Fig. 6. The impossibility of choosing a single best convex bound for the function f (dark curve). д1 (resp. д2)
is better in the vicinity of p1 (resp. p2).

Definition 3.6. A convex bound д1 is better than д2 at a point p iff there exists a neighborhood of

p in which д1 ≺ д2.

Thus, in Figure 6, дi is better at pi for i = 1, 2.
Def. 3.6 is appropriate for the following reason. Recall that the local condition at the i-th node

is д(p0 + di ) ≤ T . Initially, the drift vector di is equal to zero; assuming that the data at the nodes

behaves continuously or can be approximated by a random walk ([24, 33, 36, 37]), it follows that

the local vector p0 + di can be modeled by a continuous process which starts at p0 and gradually

wanders away from it. Therefore, a bound is sought which is optimal (i.e., smaller than all other

bounds) in a certain neighborhood of p0. It turns out that in the general case, where f is neither

convex nor concave, no such optimal bound exists (Lemma 3.7).

Lemma 3.7. If f is neither convex nor concave, then there is no optimal convex upper bound дopt
such that дopt ≺ д in some neighborhood of p0 for every other convex upper bound д of f .

Proof. Please see the Appendix, Section A.2 �
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An optimal upper bound exists for the cases in which f is either convex (where the bound is f
itself), or concave where the optimal upper bound is the tangent plane to f at p0 (Lemma 3.8).

Lemma 3.8. If f is concave, the tangent plane at a point p is the best convex bound at p.

The proof is trivial. According to Lemma 3.5, if f is a concave function, then the tangent planes

define a family of tight bounds. The tangent plane’s value at p is equal to f (p), but all other tangent
planes lie above f . Thus, the deviation of the tangent plane at p from the point (p, f (p)) is quadratic;
hence, locally, it is smaller than that of the tangent planes at other points, which is linear (see

Figure 7).

p

Fig. 7. A concave function (dark), a point on the surface (dark), a tangent plane at the point (green) and a
tangent plane at a different point (red). The tangent plane at the point bounds it tightly from above better
than any other tangent plane. This holds in any dimension.

Consequently, when bounding a concave function from above (or, equivalently, a convex function

from below), we will replace it with its tangent plane at p0. This is next used to transform a threshold

condition on general functions to a convex condition.

3.5 “Convexizing” Threshold Conditions
If the monitored f is itself convex, the choice of a convex bound c is trivial – choose c = f . If f is

concave, then, following Lemma 3.8, the tangent plane at p0 is the optimal candidate for c . We next

handle a more general case.

Definition 3.9. : Assume that f = c1 − c2, where both c1, c2 are convex. The convexization of

the condition f ≤ T is defined by c = c1 − Lc2
(p0) ≤ T , where Lc2

(p0) is the linear approximation

(tangent plane) of c2 at p0.

Since c1 − c2 ≤ T iff c1 ≤ c2 + T , c3, we can assume that the monitored condition is given

as an inequality between two convex functions, c1 ≤ c3. This condition is especially amenable to

convexization: we replace it with c1 ≤ Lc3
(p0), where, as before, Lc3

(p0) is c3’s tangent plane at

p0. We will use this form of convexization for the inner product, cosine similarity, and PCA-Score

functions (Section 4).

Note that the c defined in Def. 3.9 is convex, bounds f from above, and that its definition is

motivated by the special cases where f is convex or concave. The lower bound case is similarly

handled: the inequality f ≥ T is replaced by the condition Lc1
(p0) − c2 ≥ T (note that Lc1

(p0) − c2

is concave and bounds f from below).

ACM Transactions on Database Systems, Vol. 1, No. 1, Article . Publication date: September 2017.
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We next prove that, for a very wide class of real problems, it is always possible to express f
as the difference of two convex functions. First we recall a definition from calculus that comes in

handy for testing convexity:

Definition 3.10. Let f be a function of x1...xn . Its Hessian Hf is the n ×n matrix Hf (i, j) =
∂2f

∂xi ∂x j
.

It is well known that a function is convex in a given domain D iff its Hessian is positive semidefi-

nite (PSD)
6
at every point in D7

.

Lemma 3.11. If f possesses bounded second derivatives in a domain D, it can be expressed as the
difference of two convex functions.

Proof. Since the elements ofHf are bounded over D, there is an upper bound, Λ, on the absolute

values ofHf ’s negative eigenvalues. Define c1(u) = f (u)+ Λ
2
∥u∥2, c2(u) =

Λ
2
∥u∥2

. Clearly, f = c1−c2

and c2 is positive definite. Also, Hc1
= Hf + Hc2

= Hf + ΛI (where I is the identity matrix). Hence,

all the eigenvalues of Hc1
are ≥ 0 and c1 is convex. �

All the functions we deal with in this paper either have bounded second derivatives, or their

derivatives are continuous and the domain of interest is bounded; hence, Lemma 3.11 is applicable.

We will apply it for monitoring cosine similarity (Section 4.3).

3.6 Violation Recovery
Whenever a local violation occurs (i.e. f (p0 + di ) > T ), the corresponding node notifies the

coordinator. The coordinator then attempts to resolve the violation by searching for a subset of

nodes (which contains the violating node) whose local vectors “balance” each other (i.e., the value

of the bounding function evaluated at their average is below the threshold). Following [20, 57], we

applied the “lazy” recovery scheme, in which the coordinator gradually gathers local vectors until

it manages to balance the violating ones.

4 APPLYING CB
We next apply CB to monitor four popular functions: the Pearson correlation coefficient, inner

product, cosine similarity, and PCA-Score (“effective dimension”). The Pearson Correlation Coef-

ficient (PCC) is often used to measure correlation between binary events (please see an example

application of air quality monitoring in the Introduction). Inner product and cosine similarity

are similarity metrics. They can be used to measure the similarity between multi-dimensional

vectors. For example, one may be interested to know the (dis)similarity between search terms used

by different communities or the (dis)similarity between twitter hashtags used by different social

groups. The search terms or hashtags (in a specific time window) can be arranged as vectors, and

the inner product of these vectors can be calculated to give a size-dependent score of the similarity.

On the other hand, cosine similarity can be used for a normalized similarity score. The PCA score

captures the effective dimension of a PCA matrix. As noted by Lakhina et al. [38] and others, some

systems (or environments) have an intrinsically low effective dimension. A change in the effective

dimension signifies system health issues or a phase change (such as a sharp model drift).

These functions were chosen both for their great practical importance and since they do not

fall into any category for which there exist simple, efficient solutions (they are not linear, convex,

concave, or monotonic). In Sections 6, 7, 8 we compare the run-time, communication overhead,

and power consumption of CB and GM in a variety of real scenarios.

6
A matrix B is PSD iff uBut ≥ 0 for every vector u . A symmetric matrix is PSD iff all its eigenvalues are ≥ 0.

7
For a comprehensive study of convexity see [7].
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To apply CB, we follow the method described in Section 3.5. If the monitored function cannot be

directly written as the difference of two convex functions (as in the case of cosine similarity), we

apply Lemma 3.11.

4.1 PCC
The Pearson correlation coefficient measures the linear correlation between two variables. Let x ,y
denote the frequency of appearances of two items in elements of a certain set, and z the frequency
of their joint appearances. A very typical example is when x ,y denote the ratio of documents in

which certain terms appear, and z the same for appearances of both terms simultaneously. The

range over which PCC is defined is therefore 0 ≤ x ,y ≤ 1 and z ≤ x ,y. The function measures the

strength of correlation between the appearances of x and y, and is defined by

P(x ,y, z) =
z − xy

√
x − x2

√
y − y2

. (1)

We will assume T > 0; the case T ≤ 0 is treated similarly.

The condition P(x ,y, z) ≤ T can be written as z ≤ xy +T
√
x − x2

√
y − y2

. We convexize it as

follows. First, note that xy is neither convex nor concave; it is trivial to verify that the Hessian’s

eigenvalues for xy are always 1 and −1 (i.e., every point on the function’s surface is a saddle point).
We therefore use the identity xy =

(x+y)2

4
−

(x−y)2

4
. Denote Q1 =

(x+y)2

4
,Q2 =

(x−y)2

4
(note that

Q1,Q2 are convex). We also need the following:

Lemma 4.1. The function
√
x − x2

√
y − y2 is concave.

Proof. Please see the Appendix, Section A.4. �

The condition P(x ,y, z) ≤ T can therefore be written as

(z −T
√
x − x2

√
y − y2 +Q2) −Q1 ≤ 0 , (2)

and, since this last expression is the difference of two convex functions
8
, we can proceed by applying

the paradigm described in Def. 3.9. The lower bound case is similarly handled. It remains to calculate

the tangent planes of Q1,Q2,
√
x − x2

√
y − y2

, but that is just an exercise in calculus. The convex

upper bound and concave lower bound are depicted for some representative values in Figure 8.

4.1.1 Monitoring PCC with GM. As explained in Section 2.2, to apply GM we must be able to

solve the closest point problem for the surface defined by z = xy +T
√
x − x2

√
y − y2

. To this end,

we used dedicated software [26], which first reduces the surface’s equation to an algebraic one and

then solves for the closest point. This incurred a run-time far higher than the simple CB solution

(by more than three orders of magnitude) and also resulted in higher communication overhead;

results are provided in Section 6.1.

4.2 Inner Product
The inner product function is extensively applied in data mining and monitoring tasks as a measure

of similarity. We assume that the monitored function f is over vectors of length 2n, and is equal to

the inner product of the first and second halves of the vector; denoting the concatenation of vectors

x ,y by [x ,y], we have f ([x ,y]) = ⟨x ,y⟩. To express f as the difference of two convex functions,

note that 4⟨x ,y⟩ = ∥x + y∥2 − ∥x − y∥2
. Since the norm squared function is convex, the condition

⟨x ,y⟩ ≤ T is convexized by

8
Since T

√
x − x 2

√
y − y2

is concave, its negative is convex.
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Fig. 8. Left: a convex upper bound (blue) for PCC (green). The reference point (in red) is x0 = 0.3,y0 = 0.6,
and T = 0.4. Right: a concave lower bound.

∥x + y∥2 ≤ 4T + ∥x0 − y0∥
2 + [x0 − y0,y0 − x0], [x − x0,y − y0] , (3)

where the reference pointp0 = [x0,y0], and the gradient of ∥x−y∥
2
is equal to 2[x−y,y−x] (recall

that, for a multivariate function f , the tangent plane at a pointu0 is given by f (u0)+⟨∇f (u0),u−u0⟩).

4.2.1 Monitoring inner product with GM. In order to apply GM, one must be able to solve the

closest point problem for the threshold surface, ⟨x ,y⟩ = T . If the point outside the surface is denoted
[x0,y0], the problem can be formulated as

Minimize (∥x − x0∥
2 + ∥y − y0∥

2) such that ⟨x ,y⟩ = T .

This problem can be solved with Lagrange multipliers. Define

F , ∥x − x0∥
2 + ∥y − y0∥

2 + 2λ( ⟨x ,y⟩ −T ). The equations ∂F
∂x ,

∂F
∂y ,

∂F
∂λ = 0 assume the form:

(x − x0) + λy = 0, (y − y0) + λx = 0, ⟨x ,y⟩ = T . (4)

These equations can be solved by first extracting x ,y as functions of x0,y0 from the first two

equations and then plugging the result into the third equation, ⟨x ,y⟩ = T . Skipping the details, this
yields a quartic equation in λ:

Tλ4 − (2T + ⟨x0,y0⟩) λ
2 +

(
∥x0∥

2 + ∥y0∥
2
)
λ − ⟨x0,y0⟩ +T = 0 .

After solving for λ, it is easy to solve for x ,y.
While the inner product case is the only one addressed here for which a relatively simple solution

for GM could be found, it still incurs the overhead of computing the quartic’s coefficients, solving it,

and checking the solutions to see which one yields the closest point on the surface. GM’s run-time

was about 5 times higher than CB’s.

4.3 Cosine Similarity
Another very popular measure of similarity is cosine similarity (referred to as Csim hereafter),

which resembles the inner product function, but normalizes it by the length of the vectors. For

example, if we have two histograms of word frequencies, derived from two document corpora,
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Csim will “neutralize” the effect of the corpus size when measuring the histogram similarity; the

inner product function, however, is biased towards larger corpora.

As in the inner product case, the data vector p is [x ,y], the concatenation of two n-dimensional

vectors x ,y, and the reference point will be denoted p0 = [x0,y0]. Then, Csim is defined by

Csim(p) =
⟨x,y ⟩
∥x ∥ ∥y ∥ . Thus, to monitor a lower bound, i.e., Csim(p) ≥ T (we assumeT > 0; the case of

negativeT is similarly treated), we need to monitor the condition ⟨x ,y⟩ ≥ T ∥x ∥∥y∥. This problem is

more complicated than the inner product case, since there is no obvious way to decompose it into an

inequality between two convex functions; this is because while representing ⟨x ,y⟩ as the difference
of two convex functions is relatively easy, it is more difficult to derive such a representation for

∥x ∥∥y∥. We therefore resort to using the method outlined in Lemma 3.11. We must first determine

the smallest eigenvalue of the Hessian of ∥x ∥∥y∥. It follows from the following lemma that it equals

−1:

Lemma 4.2. At a point x ,y, the eigenvalues of H (∥x ∥∥y∥) are 1, −1 (each with multiplicity one)
and ∥x ∥/∥y∥, ∥y∥/∥x ∥ (each with multiplicity n − 1).

Proof. Please see the Appendix, Section A.5. �

Now we can proceed to convexize the problem. First, we write the inequality ⟨x ,y⟩ ≥ T ∥x ∥∥y∥
as ∥x + y∥2 ≥ ∥x − y∥2 + 4T ∥x ∥∥y∥. Next, to make both sides convex, we add 2T (∥x ∥2 + ∥y∥2) to

them, to obtain:

∥x + y∥2 + 2T (∥x ∥2 + ∥y∥2) ≥ ∥x − y∥2 + 4T ∥x ∥∥y∥ + 2T (∥x ∥2 + ∥y∥2)

Lastly, the inequality is convexized by replacing the RHS with its tangent plane at p0. This step is

straightforward, requiring only computation of the gradient, and is omitted for brevity.

4.3.1 Monitoring Csim with GM. The problem of calculating the distance of a point to the Csim

surface {[x ,y]|⟨x ,y⟩ = T ∥x ∥∥y∥} is exceedingly difficult and no closed-form solution exists. We

were able to simplify the computation of the closest point, reducing it to an optimization problem

in merely three variables regardless of the dimensions of x ,y. Nonetheless, three different software
packages we applied took about three minutes to complete the task for a single point.

Details on the closest point problem for Csim are in the Appendix, Section A.6.

4.4 PCA-Score
PCA (Principal Component Analysis) is a fundamental dimension reduction technique with numer-

ous applications. Given a set of vectors in Euclidean space, PCA seeks a low-dimensional subspace

which, on the average, well-approximates the vectors in the set. Formally:

Definition 4.3. Given 1 > T > 0 (typically T ≈ 0.9) and a finite set of vectors S ⊂ Rm
, the

effective dimension of S is defined as the smallest dimension of a sub-space V ⊂ Rm
, such that∑

u ∈S

∥PV (u)∥
2 ≥ T

∑
u ∈S

∥u∥2
, where PV (u) is the projection of u on V .

9

It is well known that the effective dimension, denoted k hereafter, can be computed as follows:

(1) Construct them ×m scatter matrixM =
∑
u ∈S

uut . Note that in the distributed setup, S is equal

to the sum of local scatter matrices at the nodes.

(2) ComputeM’s eigenvalues, λ1 ≥ λ2 ≥ ... ≥ λm .

(3) Determine the smallest k such that

∑
1≤i≤k

λ2

i ≥ T
∑

1≤i≤m

λ2

i .

9
We assume that S is centralized, i.e., its average is zero. The general case proceeds along the same lines.
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In [38], PCA is applied to measure the health of a system consisting of distributed nodes: at each

timestep, a vector of various system parameters is associated with each node (typically, the vectors’

components are various traffic volume indicators). System-wide anomalies (e.g., DDOS attacks) are

highly correlated with an increase in the effective dimension of the union of the parameter vectors

over all nodes.

Hence, we wish to monitor whether the PCA-Score, defined by (
∑

1≤i≤k

λ2

i )/(
∑

1≤i≤m

λ2

i ), exceeds

some threshold T . As for the previous functions we handled, the difficulty lies in that λi are the
eigenvalues of a global matrix equal to the sum of the local matrices; hence, its exact computation

at every timestep will incur a huge communication overhead. In order to apply CB for distributed

monitoring, we must express the PCA-Score as a function of the average matrix, as opposed to the

sum; however, since (i) eigenvalues scale linearly when the matrix is multiplied by a scalar, and (ii)

the PCA-Score is defined as the ratio of sums of squares of eigenvalues, its values on the average

and sum matrices are equal.

What remains is to “convexize” the inequality∑
1≤i≤k

λ2

i ≥ T
∑

1≤i≤m

λ2

i . (5)

We rely on the following two lemmas:

Lemma 4.4. For anm ×m scatter matrix S ,
∑

1≤i≤m

λ2

i equals Tr
2(S) and is a convex function of S . The

proof follows immediately from the fact that every scatter matrix is symmetric.

Lemma 4.5. For a symmetric S ,
∑

1≤i≤k

λ2

i is convex.

Proof. This follows from the well-known Fan identities, specifically Theorem 2 in [15]. �

Since both sides of Eq. 5 are convex, we can proceed as in Section 3.5, by replacing the LHS with

the tangent plane at the reference scatter matrix S0. All that is required is to compute the gradient

of the LHS; for that, we use the following result from linear algebra.

Lemma 4.6. The derivative of λi with respect to S is equal to eieti , where ei is the eigenvector of S
corresponding to λi .

Hence, the monitored condition in Eq. 5 is convexized by∑
1≤i≤k

λ2

i (S0) + 2⟨
∑

1≤i≤k

λi (S0)ei (S0)e
t
i (S0), S − S0⟩ ≥ T (Tr(S2)) , (6)

where S0 is the reference matrix and S the local matrix.

4.4.1 Monitoring PCA-Score with GM. In order to apply GM, we must be able to compute the

minimal PCA-Score over all matrices in a sphere in them2
-dimensional space ofm ×m matrices.

This can be done using the perturbative bounds applied in [28], which also addressed monitoring

the health of a distributed system. We have also tested a simpler method, analogous to the ones

used in [28], in which the local condition is defined as containment in the maximal sphere around

the reference matrix which is contained in the admissible region. Both methods require bounding

the change in the eigenvalues, given the magnitude of change in the matrix. Two such perturbative

bounds can be applied, which relate the change in the eigenvalues to the Frobenius norm or the

spectral norm of the change in the matrix (i.e., drift vector). We refer to the algorithms which

use the Frobenius norm resp. spectral norm as FN resp. SN. For better readability, these methods
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are described in an appendix (Section A.3); see also [7]. We note that all these methods (GM, FN,

SN) require solving the difficult problem of finding the closest point on the surface of matrices

whose PCA-Score equals T ; this renders them slower than CB. Further, CB was better at reducing

communication overhead. Details are provided in Section 6.4.

5 EXPERIMENTAL SETTINGS
In the experiments, CB was compared to GM for the tasks of monitoring the functions discussed

in Section 4, over a few datasets and for different threshold values. For the PCC, Csim and inner

product functions, we compared CB to GM. To the best of our knowledge, GM represents the state-

of-the-art in monitoring threshold queries over distributed streams. We are not aware of any other

work on monitoring cosine similarity and the PCC, and while there is other work on monitoring

the inner product [12], GM improved on it [20]. For the PCA-score function, we compared CB to

GM as well as to the Frobenius norm (FN) and spectral norm (SN) perturbative bounds described

in [28].

We examined the sliding window scenario, in which the data of interest are the lastm records

for some predefinedm (or the last records received within a certain period); for example, one may

wish to continuously monitor only the last 1000 tweets in a tweet stream. The sliding window

case corresponds to the turnstile model, in which the data vector’s entries can both increase and

decrease, and is more general than the cash register model, in which the entries can only increase.

In all the experiments, CB outperformed the other methods in both communication reduction

and run-time, with the improvement factor in run-time being orders of magnitude for PCC, cosine

similarity, and PCA-Score.

We also performed experiments to evaluate the power consumption of CB vs. GM on two

resource-limited devices: a VOYO Mini-Pc and an Edison SoC. As expected, the experiments show

that CB’s advantage in run-time is translated to an advantage in power consumption. CB’s power

consumption was much lower than GM’s, reaching orders of magnitude for most functions, making

it more suitable for battery operated devices. Details on setup and results are in Section 8.

5.1 Data
We used three real data sets: the Reuters Corpus (RCV1-v2, REU), a Twitter crawl (Dataset-UDI-

TwitterCrawl-Aug2012, TWIT), and the 10 percent sample supplied as part of KDD Cup 1999 Data

(KC). The overall sizes of these data sets were: REU 374MB, TWIT 691MB, KC 46MB.

REU consists of 804,414 news stories, produced by Reuters between August 20, 1996, and August

19, 1997. Each story was categorized according to its content and identified by a unique document

ID. REU was processed by Lewis et al. [41]. A total of 47,236 features were extracted from the

documents and then indexed. Each document is represented as a vector of the features it contains.

We simulate ten streams by arranging the feature vectors in ascending order (according to their

document ID) and selecting feature vectors for the streams in round-robin fashion.

TWIT is a subset of Twitter, containing 284 million follower relationships, 3 million user profiles,

and 50 million tweets. The dataset was collected during May 2011 by Li et al. [43]. We filtered the

dataset to obtain only hashtagged tweets, which left us with 9 million tweets from 140,000 users.

For each tweet, the dataset contains information about the tweet content, tweet ID, creation time,

re-tweet count, favorites, hashtags and URLs.

KC was used for The Third International Knowledge Discovery and Data Mining Tools Competi-

tion. The original task was to build a network intrusion detector. The dataset contains information

about TCP connections. Each connection is described by 41 features, including duration, protocol,

bytes sent, bytes received, and so forth.
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For all data sets, in order to simulate multiple streams, we distributed the data between the

nodes in round-robin fashion. Results are presented for 10 streams, and in Section 7 we present

some results for communication reduction for up to 1,000 streams (the reduction in computational

overhead does not depend on the number of streams).

6 COMPUTATIONAL OVERHEAD REDUCTION
Next we discuses the main results of this paper – the reduction in running time for monitoring

the four functions presented in Section 4. In the following sections we discuss the communication

reduction results and the evaluation of power consumption on resource-limited devices.

In Figure 9 we present a summary of the running times for GM and CB, on the various functions

and data-sets. In all cases CB outperforms the previous state-of-the-art. Per function details are

provided in Sections 6.1 to 6.4.
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Fig. 9. Running times for a local condition check. “SN” and “FN” stand for previous methods to monitor
PCA-Score (see Section 6.4). CB is the fastest method (by orders of magnitude faster in most cases). Note
the logarithmic scale.

6.1 Pearson Correlation Coefficient
We evaluated PCC on REU, where every document may be labeled as belonging to several cat-

egories. The most frequent category is “CCAT” (the “CORPORATE/INDUSTRIAL” category). In

the experiments our goal was to select features that are most relevant to this category, i.e., whose

PCC with the category is above a given T . Each node holds a sliding window containing the last

6,700 documents it received (this is roughly the number of documents received in a month). We

monitored the correlation of “CCAT” with the features “Bosnia” and “Febru”.

Run-time evaluation. Themajority of GM’s run-time is spent on testing for sphere intersection

with the PCC surface. To solve this problem we used the Gloptipoly global optimization package

[26]. In CB, the local conditions for PCC monitoring are very simple; they only require computing

the functions composing the PCC and their derivatives (Section 4.1).

The experiments demonstrated that the run-time of checking the local condition for the CB

method is almost four orders of magnitude lower than for GM (see Table 1). Note – The table also

include results for inner product and Csim
10
.

10
In the PCA-Score experiments (Section 6.4) we compared CB to three different methods; hence the results are provided

separately in Table 2.
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Table 1. Run-time for checking the local condition using CB vs. GM. Even for the inner-product function
where no optimization is required, CB is considerably faster.

Function Dataset Dim

Run-time (seconds)

Speedup

GM CB

PCC REU 3 0.58 0.67E-04 8,657.7

Inner-Prod REU 4100 1.35E-04 6.89E-04 5.10

Inner-Prod TWIT 2500 8.90E-05 5.20E-04 5.84

Csim REU 4100 1.73E-4 175 1,000,000

Csim TWIT 2500 1.41E-04 170 1,200,000

6.2 Inner Product
We monitored the inner product on REU and TWIT. As in [20], we calculated the inner product

of feature vectors from two streams (created by splitting the records). For REU, we used the top

2050 features left after removing features which appear in less than 1% of the documents. We used

the NLTK [6] package to tokenize and stem the tweets in TWIT and then selected the top 1250

features, ignoring features appearing in less than 0.1% of the tweets.

In the REU experiment, each node held a sliding window of the last 6,700 documents, while in

TWIT each node held a sliding window containing the last 1000 tweets. We used threshold values

between 7000 and 17000 for TWIT, and between 4.9E7 to 5.5E7 for REU.

Run-time evaluation. Although GM requires no optimization to find the closest point on the

surface but only to solve a quartic equation, CB checks local conditions about 5 times faster (see

Table 1); this is due to the time required to construct and solve the equation, and then to check the

distinct solutions to see which one yields the closest point. Checking the local conditions requires

more time for the REU dataset, since the feature vectors are longer (2050 vs. 1250).

6.3 Cosine Similarity
To evaluate the computational overhead for the cosine similarity function, we monitored both REU

and TWIT, using the same settings as the inner product experiments (see Section 6.2).

Run-time evaluation. CB was about six orders of magnitude faster than GM for both datasets.

The run-time of a local condition check in GM is almost 3 minutes, while for CB it is less than 0.2

milliseconds (See Table 1). This is not entirely surprising, as the closet point problem for the cosine

similarity function is very difficult; see 4.3.1.

6.3.1 Comparison with CSZ. Recently Lazerson et al. [39] proposed the CSZ method, which can

be used for tracking a complex function by decomposing it into simpler primitives and tracking

them simultaneously. As an example, they decomposed the cosine similarity function and tracked

it using CSZ. They noted that a direct application of the CB method yields lower communication

costs than CSZ; however, they did not evaluate running times, which are the main focus of this

work. Our goal here is to compare the run-time of CB to that of CSZ, where each (simple) primitive

is tracked using GM.

Following Lazerson et al. [39], we decompose cosine similarity into three simpler primitives: the

inner product ⟨x ,y⟩ and the norms of x and y ∥x ∥, ∥y∥. Note that the distance to the threshold

surface defined by each of these functions (and therefore the local condition) can be computed

using a closed form solution and requires no optimization (see Section 4.2 for the inner product,

and [39] for the norm).

ACM Transactions on Database Systems, Vol. 1, No. 1, Article . Publication date: September 2017.



Lightweight Monitoring of Distributed Streams :19

1

100

10000

1000000

100000000

REU TWIT

R
u

n
ti

m
e 

(m
ic

ro
se

co
n

d
es

)

CB

CSZ

GM

Fig. 10. Running times for a local condition check. While the decomposition method (CSZ) is much faster
than GM, CB is the fastest of the three. Note the logarithmic scale.

We tracked the cosine similarity function on REU and TWIT using a relative approximation

bound of 0.1 and compared CB to CSZ. Figure 10 shows the run-times of CB and CSZ for the

two datasets. For completeness we also include the run-time of a direct application of GM. GM

has the worst run-time by far; CSZ is almost five orders of magnitude better, but it is still an

order of magnitude slower than CB despite all the functions it tracks having closed form solutions.

The communication cost of CB is superior to that of CSZ (see also [39] ). In our evaluation, the

communication incurred by CB was about 3.6 times lower than CSZ for the TWIT dataset and

about 10 times lower for REU.

6.4 PCA-Score
For monitoring the PCA-Score function, we compared CB with GM as well as with methods based

on the Frobenius norm (FN) and spectral norm (SN) perturbative bounds, described in [28] (see

also Section 4.4). All methods except CB require solving complex optimization problems, which

were implemented using Matlab and the CVXOPT
11
package.

We monitored the PCA-Score over KC using 10 nodes, each holding a sliding window of the last

100 feature vectors. We ran experiments with threshold valuesT ranging between 0.8 and 0.95, and

effective dimension values ranging from 3 to 6.

The experiments show that the three previous methods which were compared with CB – SN, FN

and GM – offer a trade-off between communication cost and run-time.

GM achieves the best communication cost of the three but is also the slowest method. FN is

faster than GM but its communication cost is slightly higher. SN is the faster of the three by far, but

it achieves relatively poor communication reduction. CB improves on all three methods, achieving

better communication cost than GM and better run-time than SN (Figure 11).

Run-time evaluation. Run-time results for monitoring the PCA-Score are displayed in Table

2. The table shows the run-time of a local condition check of each method as well as the speedup

factor achieved by CB.

CB is about 3 times faster than SN, two orders of magnitude faster than FN, and three orders of

magnitude faster than GM. Note that while SN run-time results are better than GM’s, it achieves a

rather poor reduction in communication (Figure 12).

11
http://cvxopt.org/
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Fig. 11. Runtime and communication costs of the different methods used to monitor the PCA-Score. The
previous methods – SN, FN and GM – offer a trade-off between speed and efficiency. CB dominates them,
offering both faster run-time and better communication cost.

Table 2. Run-times (seconds) for monitoring the PCA-Score over KC.

CB SN FN GM

run-time 0.0086 0.027 2.01 9.57

CB speedup 1 3.20 232.81 1105.95

7 COMMUNICATION OVERHEAD REDUCTION
While the focus of the CB method was on reducing computational overhead, we also wanted to

evaluate its impact on the communication cost. Clearly, reducing computation cost at the price of

a large communication overhead is unacceptable. Our evaluation shows that CB does not incur

extra communication costs above GM. In fact, CB offers a modest improvement in communication

overhead (in addition to the considerable improvement in run-time). In this section we provide

results on the performance of CB in reducing overall communication.

To evaluate the communication cost, we measured the number of messages sent. The naive

method, in which every message is sent to the coordinator, is used as a common baseline, and

communication cost is reported using ratio to naive. At the opposite extreme, we compared to a

hypothetical algorithm, which alerts only when the threshold condition is locally violated, i.e.,

when f (vi ) ≥ T for some local vector vi . Clearly, every monitoring algorithm will have to alert

in such a case. However, to maintain correctness, the local conditions have to adhere to the more

restrictive constraint f (v1+...+vk
k ) ≤ T . Since the constraints of every correct algorithm are more

restrictive, it will issue more alerts, leading to a higher communication cost (unless, of course, f
is convex). We refer to this super-optimal bound – the number of local violations – as RLV (real

local violations); if the ratio between the number of messages sent by a certain algorithm and the

number RLV sent is close to 1, then hardly any additional improvement is possible.

Figure 12 shows a summary of the communication required by CB, GM, and RLV for the functions

we studied as well as SN and FN for the PCA-Score function. Each bar represents the results across

multiple thresholds and datasets. CB is always better than GM. In most cases CB is close to the

super-optimal lower bound RLV, meaning that hardly any improvement is possible. Note that while

FN and SN displayed better run-times than GM (Table 2), they have higher communication costs.
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CB is better than the competing methods (GM, FN, SN) in both run-time and communication costs

(See also Figure 11).
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Fig. 12. Communication reduction summary (lower is better). CB’s communication cost is lower than that of
the other methods. In most cases it is very close to the super-optimal lower bound (RLV).
* The GM ratio for the CSIM function is based on an estimation since its run-time prohibited direct evaluation.

Testing the effect of the window size on the communication cost revealed that communication

cost decreases as the window size grows; see Figure 13. This decrease is due to the slower change

in the function’s value. This explains the relatively modest communication reduction for the PCA

function (Figure 12), where a small window was used.
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Fig. 13. Relative communication cost as a function of window size for inner-Prod on TWIT (lower is better).
As window size increases, the communication cost drops.

To test the scalability of CB, we ran experiments with up to 1,000 nodes. Figure 14 shows the

results. The advantage of both CB and GM (and RLV) over the naive method grows with the number

of nodes, while CB maintains its superiority over GM.

Our evaluation across multiple datasets using various threshold values showed that CB’s com-

munication cost was better than GM’s not only on the average but for all cases we tested. It is also

evident that both CB and GM are affected by the choice of threshold values regardless of the specific

ACM Transactions on Database Systems, Vol. 1, No. 1, Article . Publication date: September 2017.



:22 Anon.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 200 400 600 800 1000 1200

R
at

io
 t

o
 n

ai
ve

Number of nodes

GM

CB

RLV

Fig. 14. Scalability with the number of nodes (inner-prod, TWIT). Relative communication cost for up to 1000
nodes (lower is better). The improvement factor over the naive method grows with the number of nodes.
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Fig. 16. PCC value over time (Febru).

function or dataset. Threshold values that are crossed more often cause higher communication

overhead for both methods (since the monitoring task is more difficult).

We next provide a detailed study and analysis of CB’s improvement over GM in reducing

communication overhead for each of the functions.

7.1 Pearson Correlation Coefficient
CB performed better than GM for all thresholds (Figures 15 and 17). The advantage whenmonitoring

“Bosnia” was larger, with CB typically performing two to three times better. This is due to there

being much less room for improvement for “Febru”, as indicated by the proximity to the RLV bound.

To understand how the monitored threshold affects the communication overhead in Figure 15 (17),

see the behavior of the function over time in Figure 16 (18). For "Febru", when the threshold is

equal to -0.05, it is crossed many times, rendering the monitoring task more difficult. Other values

(e.g. -0.07) are less frequently crossed; hence the monitoring is more efficient. "Bosnia" displays

similar behavior, where the threshold is value of -0.06 is more frequently crossed than others.
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Fig. 17. PCC, communication cost (Bosnia).
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Fig. 18. PCC value over time (Bosnia).
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Fig. 19. Inner product, communication cost (REU).
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Fig. 22. Inner product value over time, (TWIT).

7.2 Inner Product
CB sent fewer messages than GM for all threshold values of both datasets (see Figs. 19 and 21). It

is about 1.3 to 2 times better on TWIT, while only about 10-25 percent better on REU. Again, the

proximity to the RLV graph indicates that there is little room for improvement on the REU dataset.

To understand how the threshold affects the communication overhead in Figure 21 (19), see the

behavior of the function over time in Figure 22 (20).
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Fig. 23. Csim, communication cost (REU).
* GM data is unavailable since it did not terminate in 24 hours.
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Fig. 25. Csim, communication cost (TWIT).
* GM data is unavailable since it did not terminate in 24 hours.
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Fig. 26. Csim value over time, (TWIT).

For the TWIT dataset, when the threshold is equal to 11,000, it is crossed many times, rendering

the monitoring task more difficult. Other values (e.g. 15,000) are hardly ever crossed; hence the

monitoring is more efficient. The same behavior is displayed in the REU dataset, where the threshold

value of 5.3E+7 is more frequently crossed than others.

7.3 Cosine Similarity
Figures 23 and 25 show the communication cost comparison for REU and TWIT respectively.

As noted, the GM experiments did not terminate in 24 hours. This is not entirely surprising, as

monitoring Csim with GM requires solving an exceedingly difficult problem (Section 4.3.1). CB

significantly improves over the naive method, reducing communication by more than two orders

of magnitude for the REU data set and by a factor of 3 to 6 for the more erratic TWIT dataset. (the

run-time results are given in Table 1). The function value over time for REU and TWIT are given in

Figures 24 and 26 respectively. As with the previous functions, they can be used to understand the

effect of different thresholds on the communication overhead.

For the Csim function, GM run-time is so overwhelming that it can not be used in practice; still,

we wanted to assess the potential communication advantage of CB over GM. To do so, instead of

running an experiment in a distributed setting using high-dimensional real data, we conducted an

experiment using a single node on lower-dimensional simulated data.
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Since the experiment is conducted on a single node, we do not report communication cost.

Instead, we report the number of alerts issued by each of the methods (fewer alerts imply a better

method).

Following is brief description of the experiment: A reference point p0 = (x0,y0) (where x0 and y0

are 100-dimensional vectors) was selected at random, and then a threshold T was selected such

that Csim(p0) ≤ T . Next we selected a noise magnitude parameter, σ , and generated 1000 vectors

by adding random uniform noise in the range [−σ ,σ ] to every component of p0. These vectors

were used as a stream of data. We repeated the experiment for different σ values.

Figure 27 summarizes the results. As expected, both methods send more alerts as the noise

increases; however, CB demonstrates a clear advantage over GM.
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Fig. 27. Csim simulation results. Percentage of alerts per noise magnitude (lower is better). For a noise
magnitude of 5.25 GM is already "saturated" with 100% percent of the points reported as violations, while CB
reports less than 20% of the points.

7.4 PCA-Score
CB outperforms the other methods in terms of communication cost for all threshold values we

tested. Its advantage over SN, which is the faster of the previous methods, is especially notable.

Figure 28 compares the communication cost of CB to the other methods for different threshold

values. As expected, all methods incur more communication for the tighter (higher) thresholds. SN’s

performance degrade quickly as the thresholds become tighter, while the other methods degrade

more gracefully. CB’s advantage is greater for the tighter thresholds (0.9 and 0.95, see Figure 29),

where the monitoring task is more difficult.

8 POWER CONSUMPTION
Power consumption is becoming a critical factor, this is especially true for mobile, battery-operated

devices with limited computing resources. It is expected that the computational efficiency of the

CB method will be translated into superior battery lifetime. In this section we directly evaluate the

power consumption of the computational tasks for CB and GM on two resource limited devices.

Our experiments show that CB’s energy consumption is orders of magnitude lower than GM’s,

making it feasible to implement on lightweight nodes.
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Fig. 30. The Arduino Expansion Board with Edison and VOYO Mini-PC, connected to external power measur-
ing instruments.

8.1 Preliminaries
We ran experiments on a VOYO Mini-PC and an Edison SoC, on top of the Arduino Expansion

Board. The Intel Edison module is a system on chip that includes an Atom 500MHz dual-core CPU

with 1GB of RAM, running Yocto Linux. Arduino is used to develop interactive objects, taking

inputs from a variety of switches or sensors, and controlling physical outputs (such as lights and

motors). VOYO Mini-PC is a full-fledged PC designed to be used as a smart streaming media player.

It features an Intel Atom 1.33GHz quad-core CPU, with 2GB of RAM, and runs a Windows 32-bit

operating system.

To evaluate the power consumption of both devices, we connected them to a stable power supply

through a measuring device and measured the energy in mWh (Figure 30).

CB and GM are implemented in Python; GM, however, also requires some ofMatlab’s optimization

packages. GM’s implementation on the Mini-PC was relatively easy. However, running GM on the

Edison SoC was more of a challenge, since the optimization libraries required the installation of

Matlab, and Edison is memory-constrained. As a result, we were able to run only two functions on

the Edison SoC: inner product (which requires no optimization) and PCC, for which we implemented
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a light-weight Python optimization code (using coarse grid search followed by the Powell method

to find the closest point on the threshold surface).

The process for monitoring a distributed stream using CB or GM is the same except for the local

condition check. In both cases the stream is parsed, the local vector is updated and checked against

the local condition, and the coordinator is notified upon a violation, which it then resolves. We

wanted to evaluate the impact of the monitoring method on the power consumption of both the

local condition check itself and the full monitoring process.

On each device we measured the power consumption required for two different tasks. The first

task (COND) was checking the local conditions on 10,000 data items. The second task (FULL) was

running the full monitoring process to digest 10,000 data items.

To improve the run-time (and power consumption) of the full GM monitoring process we applied

two effective heuristics that are described next.

8.1.1 Reducing the running time of GM. Recall that the local condition that GM applies consists

of constructing the sphere whose diameter is the segment p0,p0 + di and checking whether it

intersects with Ā (Section 2.1, Figure 2). This is an expensive process, which (usually) requires

solving an optimization problem in order to find the closest point on the threshold surface.

The first heuristic arises from the observation that, if p0 + di ∈ Ā, there is a clear violation and

no need to check for sphere intersection. Note that checking whether p0 + di ∈ Ā is trivial. We can

start with checking this simple condition and continue to the expensive sphere intersection only if

necessary.

A second heuristic that often reduces running time was used here: first find n(p0), the point on

A’s boundary which is closest to p0. Obviously, if ∥di ∥ ≤ ∥p0 −n(p0)∥, then p0 +n(p0) lies inC0, the

sphere whose center is p0 and with radius ∥p0 − n(p0)∥; hence, the entire sphere whose diameter

is the segment p0,p0 + di lies in C0 and does not intersect Ā. Figure 31 schematically depicts the

idea. Note that this improvement, too, requires solving the closest point problem. However, in this

method the closest point does not have to be calculated on every time step. Furthermore, n(p0) is

the same for all nodes and does not depend on the current data; therefore it can be calculated at

the coordinator node (which in some settings is more powerful than the nodes).

These heuristics were applied only to the full monitoring process.

Fig. 31. Let n(p0) be the point on A’s boundary closest to p0 andC0 the sphere whose center is at p0 and with
radius ∥p0 − n(p0)∥. If p0 + di lies in C0, then its entire corresponding sphere (green) lies in C0 as well, and it
is not necessary to check whether it intersects Ā.
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8.2 Results
Figure 32 summarizes the results of the power measurements on the VOYO Mini-PC. In correlation

with the run-time results (Table 1), CB is orders of magnitude more power-efficient than GM for all

functions except inner-prod (where CB is six times better for the COND task and two times better

for the FULL task). GM’s implementation for the Csim function failed to complete on real data;

therefore we only present results for the COND experiment (where we used synthetic 3-dimensional

data). The power consumption results for the Edison SoC are depicted in Figure 33 (recall that GM

could not be implemented on it for the PCA and Csim functions).

The power consumption of CB-COND is lower than that of CB-FULL for all functions (except

inner-prod where the difference is negligible). This is because of the extra overhead required by

the full monitoring process. On the other hand, the power consumption of GM-COND is actually

higher than that of GM-FULL in all cases. This is because applying the above heuristics in the full

monitoring process means that the very expansive optimization problem is sometimes skipped. We

can also infer that the run-time of the monitoring process (excluding the local condition check) is

negligible compared to that of the local condition check of GM. While the advantage of CB for the

FULL task is smaller than its advantage for COND, it is still orders of magnitude better than GM in

most cases.
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Fig. 32. VOYO Mini-Pc power consumption. GM’s power consumption (red) is orders of magnitude higher
than CB’s (green) in most cases. Note the logarithmic scale.

9 CONCLUSIONS
Cheap, resource-constrained devices are ubiquitous, from hand-held devices and phones to sensors

in cars and environmental-control systems. With the move towards the Internet of things, their

deployment is expected to exponentially increase. Systems composed of these devices will have to

perform complex monitoring tasks in real-time, thus making communication reduction a major

goal. However, previous communication-efficient distributed schemes for monitoring fail on such

systems due to immense computational overhead. In this paper we presented a general and efficient

solution to this problem. The new method reduces orders of magnitude from the run-time overhead

while keeping the communication volume to a minimum.
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A APPENDIX
Some theoretical analysis, omitted from the body of the paper to improve readability, is provided.

A.1 The Convex Decomposition (CD) Method vs. CB
In [40], the CD method was introduced and applied to monitor AGMS sketches over distributed

nodes. CD extends GM by decomposing the inadmissible region Ā into a union of convex subsets and

then separating each of them from the reference point p0 by a suitable half-space. The intersection

of all half-spaces defines a convex subset of the admissible region, which is used for monitoring.

Thus in order to apply CD, it is necessary to find a convex decomposition of Ā. Obviously, if
either Ā or A is convex, the solution is trivial. However, from the following lemma it follows that it

is typically impossible to find such a finite decomposition:

Lemma A.1. If there is an open subset of the boundary of the threshold surface S (see Section 1) in
which the Hessian of the monitored function f has both negative and positive eigenvalues, then no
finite convex decomposition exists.

However, recall that a function is convex (resp. concave) iff all the eigenvalues of the Hessian

are positive (resp. negative). Therefore, save for the degenerate case in which f is convex, concave,

or piecewise linear, it will be exceedingly difficult to apply the CD method, as an infinite number

of constraints is required to define the convex subset of A. Thus, CD can be applied successfully to

handle functions such as median, percentiles, and min/max, but not general functions. For example,

no finite decomposition exists for any of the functions treated in this paper.
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A.2 Non-Existence of an Optimal Bound in the General Case
Recall that we’re given a function f (x) (x is a vector) and reference point p0, and the goal is to find

an upper convex bound д(x) which satisfies

• For all x , д(x) ≥ f (x).
• д satisfies some kind of optimality, i.e., is in some sense minimal among all convex bounds

for f at p0.

We denote the partial order over functions by h1 ≻ h2 (where h1 ≻ h2 means h1(x) ≥ h2(x) for all
x ).

Ideally, an optimal upper bound дopt satisfies д ≻ дopt for every other convex upper bound д of f .
It turns out, however, that such a notion of optimality exists only when f is convex or concave (in

the first case the optimal bound is f itself, and in the second case it is the tangent plane to f at p0).

We restrict ourselves to bounds д satisfying д(p0) = f (p0). Since д ≻ f , this of course implies

that the tangent planes of д and f are identical. Clearly, the second-order Taylor expansion of д at

p0, determined by its Hessian Hд(p0), plays a crucial role (since a function is convex iff its Hessian

is positive semi definite, PSD). Note that higher-order terms of the Taylor expansion are dominated

by the second-order ones in the vicinity of p0, and further, the higher-order part cannot be convex

or concave. Hence, it suffices to look only at the second-order Taylor expansion around p0.

We now show that even for the simplest non-convex and non-concave function, there is no

minimal element in the set of upper convex bounds.

Lemma A.2. Let S be the set of all convex quadratics which are everywhere larger than x2 − y2.
Then S has no minimal element.

Proof. As noted, it is enough to look at upper boundsQ(x ,y) which satisfyQ(0, 0) = 0 and have

zero partial derivatives at (0, 0). We identify each suchQ with a 2× 2 matrix A =

[
a b
b c

]
, so that

Q(x ,y) = (x ,y)A(x ,y)t . The partial ordering on the quadratics corresponds to the partial ordering

on matrices, where A ≥ B iff A − B is PSD. We then need to prove that there is no minimal element

among all PSD matrices greater than

[
1 0

0 −1

]
. Let us assume such a minimal element exists, and

denote it A0 =

[
a0 b0

b0 c0

]
. Recall that a 2 × 2 matrix is PSD iff a ≥ 0,ac − b2 ≥ 0. Hence, for A0 to

be both PSD and for A0 ≥

[
1 0

0 −1

]
to hold, we must have a0c0 −b2

0
≥ 0, (a0 − 1)(c0 + 1) −b2

0
≥ 0.

If these two inequalities are strict, then it follows from a trivial continuity consideration that A0

can be made smaller by subtracting

[
ϵ 0

0 ϵ

]
from it for a small enough ϵ , such that the resulting

matrix will still be both PSD and ≥

[
1 0

0 −1

]
, hence contradicting minimality. Assume next

that a0c0 − b2

0
= 0, (a0 − 1)(c0 + 1) − b2

0
> 0. Now, we can perturb the elements of A0 to obtain

A′
0
by a′

0
= a0 + ϵ, c ′

0
= c0 −

c0ϵ
a0+ϵ
,b ′

0
= b0, where ϵ is chosen to be positive and small enough

so that (a′
0
− 1)(c ′

0
+ 1) − {b ′

0
}2 > 0 and c0 −

c0ϵ
a0+ϵ

≥ 0 (again, such an ϵ exists due to continuity

consideration). The perturbation is chosen such that a′
0
c ′

0
− b ′

0

2 = a0c0 − b2

0
= 0. Now, A′

0
−A0 = E0,

for E0 =

[
ϵ 0

0 −
c0ϵ
a0+ϵ

]
; hence E0 is clearly not PSD, soA

′
0
∈ S andA′

0
≯ A0, again contradicting the

minimality ofA0. Similar considerations hold for the case in which a0c0−b
2

0
> 0, (a0−1)(c0+1)−b2

0
=

0. We can therefore assume that a0c0 − b2

0
= 0, (a0 − 1)(c0 + 1) − b2

0
= 0. It then follows that

ACM Transactions on Database Systems, Vol. 1, No. 1, Article . Publication date: September 2017.



Lightweight Monitoring of Distributed Streams :33

c0 = a0 − 1, and hence A0 =

[
a0

√
a0(a0 − 1)√

a0(a0 − 1) a0 − 1

]
. We complete the proof by showing

that the set of such matrices is totally unordered – that is, if A′
0
=

[
a′

0

√
a′

0
(a′

0
− 1)√

a′
0
(a′

0
− 1) a′

0
− 1

]
,

then A0 ≯ A′
0
,A′

0
≯ A0. To see this, assume W.L.O.G that a0 > a′

0
. Let us look at A0 − A′

0
=[

a0 − a′
0

√
a0(a0 − 1) −

√
a′

0
(a′

0
− 1)√

a0(a0 − 1) −
√
a′

0
(a′

0
− 1) a0 − a′

0

]
. The leading diagonal entry is positive,

but the determinant is strictly negative (proving this is just a rudimentary exercise). Hence,A0 −A′
0

is not PSD nor NSD (negative semi definite), so neither A0 ≥ A′
0
nor A′

0
≥ A0 holds. This concludes

the proof.

�

We conclude by noting that the proof immediately extends to any quadratic in n variables

x1 . . . xn which is non-convex and non-concave, since the matrix defining it must contain at least

one positive and at least one negative eigenvalue. Hence up to rotation and scale it can be expressed

as x2

1
− x2

2
± x3

2
. . . ± xn

2
, and the proof proceeds by applying the above lemma to the x2

1
− x2

2
part.

We proved that there is no minimal convex bound among quadratics. we continue to prove the

general case:

Lemma A.3. LetG be the set of all convex functions which are everywhere larger than x2 −y2. Then
G has no minimal element.

Proof. Recall that all convex quadratics that are everywhere larger than f (x ,y) = x2 − y2
take

the form Q(x ,y) = (x ,y)A(x ,y)t , where A =

[
a

√
a(a − 1)√

a(a − 1) a − 1

]
and a ≥ 1, or use function

notation Q(x ,y) = ax2 + 2

√
a(a − 1)xy + (a − 1)y2

.

Denote byQa(x ,y) the quadratic boundQ(x ,y), for a specific choice of a; for example,Q1(x ,y) =

x2
and Q2(x ,y) = 2x2 + 2

√
2xy + y2

.

Assume that there exists a function д(x ,y) that is a minimal convex bound of f (x ,y), as follows:

(1) д(x ,y) ≻ f (x ,y).
(2) д is convex.

(3) д(x ,y) ≺ Qa(x ,y) for a ≥ 1.

To guarantee minimality, д(x ,y) must not be larger thanQa(x ,y), in particular д(x ,y) ≺ Q1(x ,y)

and д(x ,y) ≺ Q2(x ,y). Let p0 = (1,−
√

2), and p1 = (0,
√

2). We note that Q2(p0) = 0 and Q1(p1) = 0.

Therefore д(p0) ≤ 0 and д(p1) ≤ 0. Since д(x ,y) is convex, д(
p0+p1

2
) ≤

д(p0)+д(p1)

2
≤ 0. However,

f (
p0+p1

2
) = f (0.5, 0) = 0.25, so д(0.5, 0) ≤ 0 < f (0.5, 0) in contradiction to д(x ,y) being an upper

bound of f (x ,y).
�

A.3 Applying GM to PCA-Score Monitoring
In order to monitor the PCA-Score in the GM framework, it is necessary to check whether a sphere

in matrix space is contained in the admissible region A. Here, A consists of all matricesM whose

eigenvalues satisfy the inequality in Eq. 5. Hence, to check whether a sphere lies in the admissible

region, we must check that the eigenvalues of every matrix in it satisfy

( ∑
1≤i≤k

λ2

i

) / ( ∑
1≤i≤m

λ2

i

)
≥ T .

To solve this problem, we must relate the change in the eigenvalues to the change in the matrix

elements. This can be done using perturbative bounds on the eigenvalues; for a review on such
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bounds, see e.g. Chapter 8.1.2 in [23]. Such bounds are also used in [27, 28], which studied distributed

PCA monitoring for system health analysis. The results are summarized below:

Lemma A.4. For two symmetric n × n matrices A,B, the following inequality holds:
n∑
i=1

[λi (A + B) − λi (A)]
2 ≤ ∥B∥2

F , where ∥B∥F is the Frobenius norm, defined as
√∑

i, j

B2

i, j .

This celebrated result is known as the Wielandt-Hoffman Theorem.

Lemma A.5. Using the same notation as in Lemma A.4, the following inequality holds for every
1 ≤ k ≤ n: |λi (A + B) − λi (A)| ≤ ∥B∥2, where ∥B∥2 is B’s spectral norm (which, for symmetric
matrices, equals max{|λ1(B)|, |λn(B)|}).

We refer to the methods which employ the bounds in Lemma A.4 (resp. Lemma A.5) according

to the type of perturbative bounds they apply, i.e., Frobenius (resp. spectral) Norm.

A.4 Proof of Concavity for Pearson Correlation Monitoring
In Section 4.1, we used the fact that one of the components of the Pearson correlation function,
√
x − x2

√
y − y2

, is concave. The proof follows. We use two well-known facts:

• A function is concave iff its Hessian is negative semidefinite.

• A 2 × 2 symmetric matrix A =

(
a11 a12

a12 a22

)
is negative semidefinite iff a11 ≤ 0, |A| = a11a22 −

a2

12
≥ 0.

Directly calculating the Hessian yields

1

4


√
y(1−y)

x (x−1)
√
x (1−x )

(2 x−1)(2y−1)
√
x (1−x )

√
y(1−y)

(2 x−1)(2y−1)
√
x (1−x )

√
y(1−y)

√
x (1−x )

y(y−1)
√
y(1−y)

 .
Clearly a11 ≤ 0 due to the x − 1 factor in the denominator (recall that we’re only interested in the

range 0 ≤ x ,y ≤ 1). The determinant of the Hessian equals

−4x2y2 + 4x2y + 4xy2 − x2 − 4xy − y2 + x + y

4x (1 − x)y (1 − y)
.

The denominator is obviously positive, and the numerator equals 4

(
x − 1

2

)
2
(
y − y2

)
+ (x − x2),

which is clearly ≥ 0. �

A.5 Proof for Eigenvalues for Cosine Similarity
In order to apply the convexity gauge for the cosine similarity function, we need to compute

the eigenvalues of the function ∥x ∥ ∥y∥. We note that this function is rotationally symmetric
(under rotations of x and y); this follows from the fact that rotation preserves norms. Hence the

Hessian’s eigenvalues are invariant to rotations in x and y. Obviously, we can rotate any vector u
to the vector (∥u∥, 0, 0...0); thus it suffices to compute the eigenvalues of the Hessian at the point

p , [(∥x ∥, 0, 0...0), (∥u∥, 0, 0...0)]. At this point the Hessian assumes a very simple form, shown

below for n = 4 with the obvious generalization to any dimension:
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0 0 0 1 0 0

0
∥y ∥
∥x ∥ 0 0 0 0

0 0
∥y ∥
∥x ∥ 0 0 0

1 0 0 0 0 0

0 0 0 0
∥x ∥
∥y ∥ 0

0 0 0 0 0
∥x ∥
∥y ∥


.

It is easy to verify that the eigenvalues are 1,−1, and
∥y ∥
∥x ∥ ,

∥x ∥
∥y ∥ , each with multiplicity n − 1.

A.6 Computing the Closest Point for Cosine Similarity Surface
In order to apply GM to cosine similarity monitoring, we must be able to find the closest point on

the threshold surface ⟨x ,y⟩ = T ∥x ∥ ∥y∥. The corresponding optimization problem is

Minimize

1

2

(∥x − x0∥
2 + ∥y − y0∥

2) (7)

such that ⟨x ,y⟩ −T ∥x ∥ ∥y∥ = 0 .

We first write x = αu,y = βv , where α , β are scalars and u,v unit vectors. It is easier to work in

this representation, since then the condition ⟨x ,y⟩ −T ∥x ∥ ∥y∥ = can be written as ⟨u,v⟩ −T = 0.

Putting it all together yields the problem

Minimize

1

2

(∥αu − x0∥
2 + ∥βv − y0∥

2)

such that ⟨u,v⟩ −T = 0, ∥u∥2 − 1 = 0, ∥v ∥2 − 1 = 0.

Next, we introduce three Lagrange multipliers for the three constraints:

F ,
1

2

(∥αu − x0∥
2 + ∥βv − y0∥

2) +

λ1(⟨u,v⟩ −T ) +
1

2

λ2(∥u∥
2 − 1) +

1

2

λ3(∥v ∥
2 − 1) .

Taking the derivative of F by α yields (⟨u,αu − x0⟩ = 0; hence α = ⟨u,x0⟩. Similarly, β = ⟨v,y0⟩.

After some simple manipulations, the problem can be written as

−
1

2

(⟨x0,u⟩
2 + ⟨y0,v⟩

2) +

λ1(⟨u,v⟩ −T ) +
1

2

λ2(∥u∥
2 − 1) +

1

2

λ3(∥v ∥
2 − 1) .

Taking the derivative by u yields

− ⟨x0,u⟩x0 + λ1u + λ3v = 0 . (8)

Now take the inner product with u to obtain

−⟨x0,u⟩
2 + λ1 + λ3T = 0 =⇒ ⟨x0,u⟩ =

√
λ1 + λ3T

Substituting back in Eq. 8, and repeating the process for ⟨y0,u⟩, yields the pair of equations

−
√
λ1 + λ3T + λ1u + λ3v = 0,−

√
λ2 + λ3T + λ2v + λ3u = 0 .
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These equations can be solved to write u,v as functions of x0,y0, λ1, λ2, λ3. Then, finally, the

conditions ∥u∥2 = 1, ∥v ∥2 = 1⟨u,v⟩ = T yields three equations in the unknowns λ1, λ2, λ3.

While the form of the resulting equations is independent of the dimension of the vectors, their

solution turns out to be exceedingly difficult. We have tried applying the GloptiPoly package [26],

which is dedicated to finding all roots of a set of algebraic equations, but it could not find a solution.

The Matlab
TM

package took on the average three minutes to find a solution, but sometimes it

missed part of the solutions. The most successful in solving the equations was Maple
TM

, but its

symbolic package could not even solve the case where x ,y are of dimension 2; its numerical “fsolve”

function was able to find all solutions, but the average running time, too, was about three minutes.
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